

Network for Computational Nanotechnology (NCN)

University of California, Berkeley; University of Illinois at Urbana-Champaign; Norfolk State University; Purdue University; University of Texas at El Paso

First-Time User Guide to MOSCAP*

Sung Geun Kim**, Ben Haley, Gerhard Klimeck

Electrical and Computer Engineering

*<u>http://nanohub.org/resources/moscap</u> **kim568@purdue.edu

Table of Contents

 Introduction →What is a MOS Capacitor ? →What can be measured in MOS Capacitors? 	3
 What Can Be Simulated by MOSCAP?: input 	5
 What If You Just Hit the "Simulate" Button?: output 	8
 Examples of Simulation Runs (input-output relationship) →What if the doping in the semiconductor is changed? →What if the oxide thickness is changed? 	10
 What is PADRE?: the simulator behind MOSCAP 	13
 Limitations of the MOSCAP Tool 	14
References	15

Introduction: What is a MOS Capacitor?

MOS Capacitor: Metal Oxide Semiconductor^[1] **Capacitor**

- Metal : metal or poly-silicon material
- Oxide : SiO₂ or high-κ dielectric material
- Semiconductor : p-type or n-type semiconductor material
- Importance of MOS Capacitors
 - » Essential for understanding MOSFET*[2]
 - » Basic structural part of MOSFET

[1] Dragica Vasileska (2008), "MOS Capacitors Description," http://nanohub.org/resources/5087

*MOSFET : Metal Oxide Semiconductor Field Effect Transistor has a source and a drain as an additional contacts to the gate contact as shown in the picture above.
For more information, refer to the following reference [2]
[2] Dragica Vasileska (2008), "MOSFET Operation Description," https://nanohub.org/resources/5085

Introduction: What Can Be Measured in MOS Capacitors?

Capacitance-Voltage Characteristics^[3]

[4] S.-H. Lo, et. al., IBM Journal of Research and Development, volume 43, number 3, 1999

What Can Be Simulated by MOSCAP? (input):

MOS Capacitor with different geometry

Single Gate

Double Gate

What Can Be Simulated by MOSCAP? (input):

MOS Capacitor with different doping and material

- Insulator dielectric constant
- Gate electrode type
- Gate workfunction* specification
- Semiconductor doping type
- Semiconductor doping density

*Workfunction is the minimum energy that is needed to remove an electron from a solid to a point immediately outside the solid surface -http://en.wikipedia.org/wiki/Work_function

What Can Be Simulated by MOSCAP? (input):

- Environment parameters
- Special parameters(charge density in the insulator)

[5]Deal B. E., Electron Devices, IEEE Transactions on, 1980

What If You Just Hit the "Simulate" Button? (output):

C-V characteristic

nonoH

C/Cox-V characteristic Energy band diagram (at VG = 0)

- Electron density (at VG = 0)
- Hole density (at VG = 0)
- Net charge density (at VG = 0)
- Electrostatic potential (at VG = 0)
- Electric field (at VG = 0)
- Energy band diagram (at last applied bias) Electron density (at last applied bias)
- Hole density (at last applied bias)
- Net charge density (at last applied bias) Electrostatic potential (at last applied bias)

Electric field (at last applied bias)

Output Log

Download

- [C-V Characteristics] : Gate capacitance vs Voltage characteristics
- [C/Cox-V Characteristics] : Gate capacitance devided by oxide capacitance vs Voltage characteristics
- [Energy band diagram] : Conduction/Valence Band, Fermi level diagram
- [Electron density] : electron density in the semiconductor
- [Hole density] : hole density in the semiconductor
- [Net charge density] : $\rho = q (N_A N_D + n p)$
- [Electrostatic potential] : $V = const q \cdot E_c$
- [Electric field] : $E = -\nabla V$
 - ρ : charge density N_A/N_D : acceptor/Donor density n/p : electron/hole density q : electron charge Ec conduction band edge E : electric field V : electrostatic potential

nanoH

NCN project

Example of Simulation (if the doping is changed)

Example of Simulation (if the oxide thickness is changed)

 $C_{tot} = \frac{1}{\frac{1}{C_{ox}} + \frac{1}{C_{S}}}, C_{ox} = \frac{\varepsilon_{ox}}{d_{ox}}$ $C_{tot} / C_{ox} / C_{S} : \text{total/oxide/semiconductor capacitance}$ $\varepsilon_{ox} / \varepsilon_{S} : \text{dielectric constant of oxide/semi conductor}}$ $W_{D} : \text{depletion width } d \quad \text{oxide thickness}$

What is PADRE?: the simulator behind MOSCAP

PADRE^[6] : classical drift-diffusion simulator

• PADRE simulates the electrical behavior of devices under steady state, transient conditions or AC small-signal analysis^[7].

[6] Dragica Vasileska; Gerhard Klimeck (2006), "Padre," <u>DOI</u>: 10254/nanohub-r941.3.
 [7] <u>http://nanohub.org/resource_files/tools/padre/doc/index.html</u>

Limitations of the MOSCAP Tool

- MOSCAP does not model quantum mechanical effects
 » Confinement of carriers in the semiconductor
 » Tunneling from the gate to the semiconductor
- MOSCAP does not have sequence plots users cannot see what happens in the intermediate steps between $V_G=0$ and the last applied bias^{*} Energy band diagram (at VG = 0)

Energy band diagram (at last applied bias)

 MOSCAP does not allow users to choose the frequency for AC analysis*
 Frequency for AC analysis: low

requency for AC analysis: low high low

* These features may be upgraded in the next versions.

References

- MOS Capacitor/MOSFET basic theory
- [1] <u>www.eas.asu.edu/~vasilesk</u>, Dragica Vasileska (2008), "MOS Capacitors Description," <u>http://nanohub.org/resources/5087</u>
- [2] <u>www.eas.asu.edu/~vasilesk</u>, Dragica Vasileska (2008), "MOSFET Operation Description," <u>https://nanohub.org/resources/5085</u>
- [3] Mark Lundstrom (2008), "ECE 612 Lecture 3: MOS Capacitors," http://nanohub.org/resources/5363
- MOS Capacitor C-V measurements
- [4] S.-H. Lo, et. al., IBM Journal of Research and Development, volume 43, number 3, 1999
- Charges in oxide

[5] Deal B. E., Electron Devices, IEEE Transactions on, 1980

• PADRE

[6] Dragica Vasileska; Gerhard Klimeck (2006), "Padre," DOI: 10254/nanohub-r941.3.

[7] <u>http://nanohub.org/resource_files/tools/padre/doc/index.html</u>

