Lecture 10 Force distance curves II

Arvind Raman

Mechanical Engineering Birck Nanotechnology Center

Classical beam theory

Example 2

$$EI \frac{d^4 w(x)}{dx^4} = 0 \Rightarrow \frac{d^3 w(x)}{dx^3} = c_1 \Rightarrow \frac{d^2 w(x)}{dx^2} = c_1 x + c_2$$

$$\Rightarrow \frac{dw(x)}{dx} = \theta(x) = \frac{1}{2}c_1 x^2 + c_2 x + c_3$$

$$w(x) = \frac{1}{6}c_1 x^3 + \frac{1}{2}c_2 x^2 + c_3 x + c_4$$

Boundary conditions

$$w(0) = \theta(0) = 0$$
 $EI\frac{d^2w(L)}{dw^2} = 0$ $EI\frac{d^3w(L)}{dw^3} = -F$

(no point moment applied at x = L)

$$\Rightarrow c_3 = c_4 = 0, c_1 = -\frac{F}{EI}, c_2 = \frac{FL}{EI}$$

$$W(L) = \delta = \frac{1}{3} \frac{FL^3}{EI}, \quad \theta(L) = \theta = \frac{1}{2} \frac{FL^2}{EI} \Rightarrow \frac{\theta}{\delta} = \frac{2}{3} L$$

 $F = k\delta$, where $k = \frac{3EI}{L^3}$ is the static bending stiffness of thecantilever

Equilibrium positions during approach and retraction

How do d* and d change as Z is reduced during approach and then retracted?

Equilibrium positions during approach and retraction

 With soft cantilevers (small k) it is not possible to measure entire 'd' range

Force distance & force-displacement

Note that hysteresis occurs in the d-Z curve between approach and retraction even though $F_{ts}(d)$ in conservative

Force spectroscopy - summary kd kd=0>

- Three distinct regions
- Pull-off force \sim F_{Ad} which can be converted to W_{132} (work of adhesion between two infinitely wide planes)
- Slope in III is good measure of repulsive forces (local elasticity)
- If k is known then from the static-force distance curve, F(d) can be calculated for all d except for inaccesible range near snap-in

Force-displacement & force distance In a typical d-Z experiment in AFM, the cantilever approaches/retracts

- In a typical d-Z experiment in AFM, the cantilever approaches/retracts from the sample while recording the cantilever deflection.
- However in force spectroscopy we are interested in converting this to a force-distance curve i.e. F_{ts} vs. d. How to convert?

Force spectroscopy - an example

Convert deflection vs. displacement curves force vs. distance (gap) curves Approach Approach 2.5 Deflection (nm) -0.51.5 Tip-sample distance d (nm) Piezo displacement Z (nm)

Three important calibrations

 Z-piezo calibration: By scanning a sample of known height (callibration grating) in contact mode

 Cantilever deflection calibration: d-Z curve on a hard sample

 Cantilever stiffness calibration (to be discussed later in class)

Some other interactions

Artefacts in F-Z curves

 Laser spot not centered in photodiode - recenter so that photodiode output
 is ~0 far from sample

Laser spot spilling over cantilever edge, reflecting of substrate interfering with signal back from cantilever - Focus spot be tter, or use non-coherent laser

Artefacts in F-Z curves

Z piezo hysteresis – warm up piezo first, use closed loop piezos

Hydrodynamic dragreduce speed

Large indentation with plastic deformation - reduce force!

Network for Computational Nanotechnology (NCN)

- www.nanohub.org
- Jobs run on the national Teragrid and superclusters
- Nanoelectronics, nanoelectromechanical syst ems, biology/nanomedicine
- Thousands of users

VEDA - Virtual Environment for Dynamic AFM Z approach) Scanning

- Many tools released on www.nanohub.org¹: F-Z, Dynamic Approach Curves, FM-approach, Amplitude Modulated Scanning
- Extension to liquids (natural, bimodal, higher harmonics etc)
- Accurate numerical simulations, convenient input parameters
- Freely accesible, web-based
- Simulations run off national teragrid and Purdue clusters
- Extensions to EFM, MFM, user specified forces on the horizon

Next class

 VEDA tutorial (rm 236 ME building) taught by Daniel Kiracofe and John Melcher

