ME597/PHYS57000 Fall Semester 2009 Lecture 22

Frequency Modulated AFM - Experimental Details -

Suggested Reading: F. Giessibl, Rev. Mod. Phys. 75, 949 (2003)

What is Required?

- High stability
- Measure small frequency shifts accurately
- Large spring constant

New Idea: Tuning Forks

Cost: ~0.25 USD

$$f_o = 2^N$$
; $N = \text{integer}$
 $f_o = 2^{15} = 32,768.0000 \text{ Hz}$

Quartz: a piezoelectric material

Introduction to Scanning Tunneling Microscopy, C. Julian Chen, Oxford University Press (2008).

Thermal stability of quartz compared to Si

F. Giessibl, Rev. Mod. Phys. 75, 949 (2003)

Electrode Geometry Selects Vibrational Mode

Vibration Spectrum

Raltron Model R26 Tuning Fork

Length (mm)	3.20 ± 0.01	Effective mass (kg)	2.72×10^{-7}
Thickness (mm)	0.40 ± 0.01	Spring constant (kN/m)	12.7
Width (mm)	0.33 ± 0.01	Resonance (kHz)	34.39
Density (kg/m^3)	2.65×10^3	Young's Modulus(Pa)	7.87×10^{10}

Eliminating the Parasitic Capacitance

Y. Qin, PhD thesis, Purdue University (2007).

Calibrating the Amplitude of Oscillation

Y. Qin, PhD thesis, Purdue University (2007).

Typical calibration (A_o vs. applied driving voltage)

Y. Qin, PhD thesis, Purdue University (2007).

Mounting a Tip: Tuning Fork AFM

$k \cong 1000 \text{ N/m}$

Q in vacuum \cong 45,000 Q in air \cong 9,000

Y. Qin, PhD thesis, Purdue University

Commercially available Q-plus sensor

Intro to Phase Locked Loops (PLLs)

Voltage-Controlled Oscillator (VCO)

Principle of Digital Phase-Lock Loops (PLL)

TASK: Instantly track and measure frequency of an input signal I(t) with high accuracy

- Negative feedback!
- Goal is to make $\Delta f = f f' = 0$

Tuning Fork AFM

No laser required to measure deflection

FM-AFM Constant Frequency Images

Scan while keeping $w(d^*)$ and Q constant

FM-AFM Force Spectroscopy

FM-AFM Force Spectroscopy W tip - HOPG substrate

