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OUTLINE

• Probe Tip Artifacts

• Instrumental Artifacts

• Large Force Artifacts

• Image Processing Artifacts

• Intrinsic Limitations

• Tip Cleaning

Recommended reading  

“AFM Image Artifacts” by West and Starostina
http://www.lot-oriel.com/site/site_down/pn_artifacts_deen.pdf



Probe Tip Artifacts



R. Marcus et al., Appl. Phys. Lett. 56, 236 (1990)

hydrocarbon 
contamination

A Good Tip

D. Schaefer, PhD Thesis, Purdue University ( 1993)

20 nm



Real Tips

Broken tip
Blunt tip

D. Schaefer, PhD Thesis, Purdue University ( 1993)

G. Prakash, PhD Thesis, Purdue University ( 2010)



Tip Imaging Artifacts
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Double Tip Image

E. Meyer, H.J. Hug and R. Bennewitz, Scanning Probe Microscopy, Springer (2003).



The Tip Dilation Algorithm

1 click

Scan direction

J.S. Villarrubia, Journal of NIST, 102 425 (1997)
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Summary: Tip Artifacts

Rule of thumb – any feature with a radius of 
curvature less than radius of curvature of tip is not 

accurately imaged.

Lesson:  Choose a tip shape/cantilever consistent 
with what you are trying to accomplish.
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Scan 
Direction

Sometimes, special tip shapes are required



Tip Surface:

• SiO2

• Si3N4

• Au-coated

• Pt-coated

• Thin organic layers

• Oxide layers

• Particulates

DRY CLEANING   
• UV (ozone) cleaning

• Heating (pyrolosis)

• Argon/Oxygen/Air plasma (glow discharge)

• Sputtering (UHV)

• Indenting

• CO2  “snow”

WET CLEANING
•Chemical Etching

• Ultrasonic cavitation

• Passivation (coating)

Tip Shape:
• Pyramidal

• Conical

Assumption:  Cleaning the tip is 
roughly equivalent to cleaning the 
whole cantilever.

Unknown tip 
morphology at 
the nanoscale?

Unknown 
microstructure 

at the 
nanoscale?

Tip Care



Gold coated (Thermal Evaporation):

Gold/Palladium coated (Sputtered):

J. Gomez-Herrero, Univ. Autonoma de Madrid

Microstructure of Metal Coating



The Problem

2. Strong adhesive force observed:
Adhesion due to water (typical):

F=4πRγcos(θ) – capillary force for sphere-plane geometry

R=10-15 nm; γ=0.0073 N/m; θ = 46o (from chip)        F=6-10 nN
Adhesive Force Histograms are a must!

How do you know the tip is dirty?

1. Low resolution:

3. Hysteresis in Amplitude vs. z data:



Tests for Scanning Artifacts
(The R3C2 Rule)

• Repeat the scan – does it look the same?

• Reverse the scan direction, does the new 
image look like the original one?

• Rotate the scan direction; do the features 
rotate as expected?

• Change the scan size; do the size of features 
scale properly

• Change the scan speed; do the features remain 
stationary?



Instrumental Artifacts



Ideal Piezos
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Limitation: Piezo Creep
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Limitation: Piezo Hystersis

Fabry-Perot Interferometer
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R. Piner, PhD thesis, Purdue University, (2000)



R. Piner, PhD thesis, Purdue University, (2000)

Limitation: Piezo Hystersis



Effect of Piezoelectric Creep and Hysteresis

AFM profile 
w. hysteresis
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Overcoming the Limitations

- Use Closed Loop Scanners for X and Y motion -

• Flexure (hinge-like) design eliminates 
friction/stiction

• Feedback on absolute position with high resolution 
using strain gauges, capacitors or inductors (LVDTs) 

Advantages
• Absolute position monitored in real time

•Accuracy/repeatability traceable to optical 
interferometer calibration



Principle of Feedback Control

Goal: Make Y(t) follow R(t) as closely as possible

• K(t) tries to minimize error(t)

• Negative feedback!

Control (Set) 
Signal

R(t)

Output

Y(t)

error(t)=Y(t)-R(t)

Dynamical 
System

Control 
Law-+

K(t)

Input

eg, PID controller

Measurement



The PID Controller
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Rules of thumb:

•Larger Kp means faster response since the larger e(t), 
the larger the feedback.

•Larger Ki means steady state errors are eliminated 
quickly. The tradeoff is overshoot.

•Larger Kd decreases overshoot but slows down transient 
response. Usually set Kd = 0 if system is noisy.

0



E. Meyer, H.J. Hug and R. Bennewitz, Scanning Probe Microscopy, Springer (2003).

When feedback is not set properly



Feedback Warning Signs

If feedback is too slow, blurred images result

If feedback is too slow, tip crashes result

If feedback is too fast, feedback oscillations or 
overshoots result

Typical Procedure: 

• Set integral gain to zero (Ki=0)

• Set proportional gain (Kp) to ~2/3 value at 
which oscillations are observed

• Increase integral gain until very first signs of 
oscillations are observed



Image Processing Artifacts

Why trust the image processing algorithms?

Check out image software by generating known images



f(x,y)=exp(-0.04*(x-125)^2-0.04*(y-125)^2)  + exp(-0.04*(x-225)^2-0.04*(y-125)^2)
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The Flatten/Level Feature

∆Zshift(N+1) = AVG(N+1) - AVG(N) 
∆Zshift(N+2) = AVG(N+2) - AVG(N+1) 
∆Zshift(N+3) = AVG(N+3) - AVG(N+2)
etc.

A Simple “Flatten” Algorithm
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∆Zshift(N+1) = AVG(N+1) - AVG(N) 
∆Zshift(N+2) = AVG(N+2) - AVG(N+1)        
etc.

“Flatten” Algorithm Applied to a Localized Feature
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Intrinsic Artifacts

Force too large

Abrupt change in properties of substrate

Change in force “volume” due to geometry



Phage Φ29 virial capsids

fo= 8.3 kHz, Q=1.02; k=0.063 N/m fo= 5.4 kHz, Q=0.47; k=0.072 N/m

Crushing force 2-4 nN

In liquid

Xu et al., Biophys. J. 95, 2520 (2008).



When is the Force too Big?

Hertz Model: 
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Young’s Modulus – Different Materials

http://www-materials.eng.cam.ac.uk/mpsite/interactive_charts/stiffness-density/NS6Chart.html

10 MPa

five 
orders of 
magnitude



Young’s Modulus - Biological Materials



Rtip

Abrupt change in substrate properties

Change in modulus, 
adhesion, hydrophobicity, 
etc.



VEDA INPUTS: 

Set point 60%
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E. Meyer, H.J. Hug and R. Bennewitz, Scanning Probe Microscopy, Springer (2003).

Geometrical change in force “volume”

Most important for long range forces, like electrostatics



A Few Words on Cleaning SPM Tips 
and Cantilevers

Conjecture regarding Murphy’s 2nd Law:                        
Any proposed cleaning technique, no matter how 

well conceived, usually makes matters worse. 

Helpful Hints are Everywhere!
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M. Fujihira, et al., “Novel cleaning method of gold-coated atomic force microscope 
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A Selected Literature Survey



Knowing what’s on your tips

Imaging XPS
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Dr. Dmitry Zemlyanov



Microsc. Microanal. 8, 509 (2002)

Calibration Substrate



Pt-coated Si tips

(Removing Particulates)



Because the polymer film is soft compared to 
the silicon tip (Young's modulus for 
polypropylene is 1-2 GPa, while for silicon it is 
132-190 GPa), the polymer will not damage the 
tip when the tip is pushed into the polymer. This 
property can be used to clean a contaminated 
tip, i.e., by pushing the contaminated tip into the 
polymer, contaminants could be removed from 
the tip apex. 

Another important property of the BOPP is that 
the polymer film is highly hydrophobic and has a 
very low surface energy of ~ 30 mJ/m2 (The 
surface energy for Si is ~ 1400 mJ/m2; and the 
surface tension of water is 72 mJ/m2). These 
properties prevent contaminants from 
accumulating on the surface and hence prevent 
the contamination of the tip in the evaluation 
process. 

Simple Method to Check AFM Tip 
Performance Using a Polymer Film

H.-Y. Nie
Surface Science Western

The University of Western Ontario

Si tips – particulate contamination

a)
b)

c)



•Don’t store microcantilevers in plastic shipping 
cases without cleaning microcantilever before use

•Use dedicated teflon or quartz beakers when 
cleaning (avoids leaching of plasticizers and pyrex).

•Use dedicated tools (tweezers, glass slides, etc.)

•Do not be afraid to clean your tweezers regularly

•Ozone cleaning and Glow Discharge cleaning are 
relatively easy (no waste or protective equipment 
required)

•After cleaning, store tips in clean solvent

•Under ambient conditions, hydrophobic tips seem 
to be better than “as-received” tips

•When in doubt, throw it out!

Recommendations


