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Tip-sample interaction forces
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Summary of last lecture
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r

Type of interaction
Ion-ion electrostatic

Dipole-charge electrostatic

Dipole-dipole electrostatic

Angle-averaged electrostatic (Keesom force)

Angle-averaged induced polarization force (Debye force)

Dispersion forces act between any two molecules or atoms
(London force)
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Adapted from J. Israelachvilli, “Intermolecular and surface forces”.



From interatomic to tip-sample           
interactions-simple theory

First consider the net interaction between an isolated atom/molecule   
and a flat surface.
Assume that the pair potential between the atom/molecule and an atom 
on the surface is given by U(r)=-C/rn.
Assume additivity, that is the net interaction force will be the sum of   
its interactions with all molecules in the body.
No. of atoms/molecules in the infinitesimal ring are 2πρxdxdz where ρ
is the number density of molecules/atoms in the surface
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From interatomic to tip-sample           
interactions-simple theory

Next integrate atom-plane interaction over the volume of all atoms in   
the AFM tip. Number of atoms/molecules contained within the slice      
shown below is πρx2dζ=πρ(2Rtip-ζ)ζdζ. Since all these are at the same    
equal distance d+ζ from the plane, the net interaction energy can be     
derived by using the result on the previous slide.
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VdW interactions between bodies

5Source J. Israelachvilli, “Intermolecular and surface forces”.



Surface-surface interactions
Following the steps in previous slides it is possible calculate     
the interaction energy of two planar surfaces a distance of ‘d’ 
apart, specifically for the unit area of one surface interacting 
with an infinite area of the other.
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The Derjaguin approximation
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Plane-plane interaction energies are fundamental            
quantities and it is important to correlate tip-sample 
force to known values of surface interaction energies
For a sphere-plane interaction we saw that

Comparing with previous slide we see that 

It can be shown that for two interacting sphere of    
different radii 
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Implications of Derjaguin’s
approximation
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 We showed this for W(r)=-C/rn however it is valid for any      
force law, attractive, or repulsive or oscillatory for two         
rigid spheres

 For two spheres in contact d=σ, the value of W(σ) is basically 
2γ12 the conventional surface energy per unit area of a            
solid surface.Thus:

This approximation is very useful while converting measured     
Fad in AFM experiments   to surface energy 
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 A prototype of the covalent chemical bond can be arrived at from quantum   
mechanical calculations for a H2

+ ion (Israelachvili 1991). The Morse            
potential describes a chemical bond with bonding energy Ebond, equilibrium  
distance σ and decay length κ. With a proper choice of the parameters the  
Morse potential is an excellent fit for the exact solution of the H2

+ problem.

 The Lennard-Jones potential has an attractive term from van der Waals        
forces and a short range repulsive term

 The Stillinger-Weber and Tersoff potentials take into account the                    
directionality of chemical bonds also, and have been used to explain              
subatomic features in Si images

Short range chemical forces
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Continuum description of contact
 If the contact area involves tens or hundreds  of atoms the description of                    

net repulsive force  is best captured by continuum elasticity models

 Hertz (1881) takes into account neither surface forces nor adhesion, and           
assumes a  linearly elastic sphere indenting on a elastic surface

 Sneddon’s analysis considers a rigid sphere or other rigid shapes on a                   
linearly elastic half space.  Neither  theory however considers surface forces

 Bradley analysis considers two rigid spheres interacting with the Lennard-Jones       
potential; Derjaguin-Müller-Toporov (DMT) considers elastic sphere with rigid   
surface but includes van der Waals forces outside the contact region;                                     
Johnson-Kendall-Roberts (JKR) neglects long-range interactions outside contact       
area but includes short-range forces in the contact area; 

 Maugis theory is even more accurate

Capella & Dietler
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Adhesion
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 Work of adhesion and cohesion: work done to separate unit   
areas of two  media 1 and 2 from contact to infinity in           
vacuum. If 1 and 2 are different then W12 is the work of       
adhesion; if 1 and 2 are the same then W11 is the work of      
cohesion.

 Surface energy: This is the free energy change γ when the      
surface area of a medium is increased by unit area. Thus 

 While separating dissimilar materials the free energy change 
in expanding the “interfacial” area  by unit area is known as   
their interfacial energy 

 Work of adhesion in a third medium
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Tip-sample adhesion
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 From the Derjaguin approximation for rigid tip interacting    
with rigid sample we have

 Real tips and samples are not rigid. Several  theories are       
used for this (Hertz, DMT, JKR)

 * These theories also apply to elastic samples, they are just  
shown on rigid sample to demonstrate key quantities clearly. 
For example D is the combined tip-sample deformation in (b) 
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Hertz vs. DMT vs. JKR
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Contact forces
Ã: normalized contact area

d: normalized penetration

F: normalized force

Butt, Cappella and Kappl
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Simple tip-sample interaction models

 van der Waals force + DMT contact

A : Hamaker constant (Si-HOPG)
R : Tip radius 
E* : Effective elastic modulus
a0 : Intermolecular distance

Rtip

a0

sample

z
z

Raman et al, Phys Rev B (2002), Ultramicroscopy (2003)
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Comments on these theories
 JKR predicts infinite stress at edge of contact circle.
 In the limit of small adhesion JKR -> DMT
 Most equations of JKR and Hertz and DMT have been  

tested experimentally on molecularly smooth surfaces   
and found to apply extremely well

 Most practical limitation for AFM is that no tip is a      
perfect smooth sphere, small asperities make a big      
difference.

 Hertz, DMT describe conservative interaction forces, 
but in JKR, the interaction itself is non-conservative    
(why?) …for a force to be considered conservative it   
has to be describable as a gradient of potential energy.
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Next lecture
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 Couple cantilever mechanics to tip sample interaction forces
 F-Z vs. F-d curves
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