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Interaction forces IT -

Tip-sample interaction forces
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Surmrary of last lecture
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Dipole-charge electrostatic ucos(é
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Dipole-dipole electrostatic
u,u, [2cos(d,)cos(8,) —sin(4,)sin(8,)cos(¢)]

U(r)=-
Areg,r*
Angle-averaged electrostatic (Kegsozm force)
u,“u
UK (r) == —
. 3(4ree, )2 k,Tr®
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Dispersion forces act between any two molecules or atoms
(London force) 3 ayo, (hv)(hv,)

U r)=——
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From interatomic to tip-sample
interactions-simple theory

First consider the net interaction between an isolated atom/molecule
and a flat surface.

Assume that the pair potential between the atom/molecule and an atom
on the surface is given by U(r)=-C/r".

Assume additivity, that is the net interaction force will be the sum of
its interactions with all molecules in the body.

No. of atoms/molecules in the infinitesimal ring are 2rpxdxdz where p
is the number density of molecules/atoms in the surface

e s dx
W(d)=-27Cp [ d¢| | _
6q¢‘\((¢ - = ( ' X )

B —27Cp
- (n=2)(n=3)d"®’

for n >3
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From interatomic to tip-sample
interactions-simple theory

Next integrate atom-plane interaction over the volume of all atoms in
the AFM tip. Number of atoms/molecules contained within the slice
shown below is npx2dC=np(2Ry;,-C)CdL. Since all these are at the same
equal distance d+ from the plane the net interaction energy can be
derived by using the result on the previous slid

v P Topr T (2R —)SAC

W (d) = —27 Cp o
(n-2)(n-3) ., (d+7)

If d <<R,,,

—27°Cp® * T" R,¢dd
(n-2)(n-3) L, (d+)™
47z2C,02RtiIO
(n—=2)(n-=3)(n—-4)(n =5)d"
For d <<R,,,n=06

7°Cp°R, HR,

W d _ Ip:_ tip
VdW( ) 6d 6d

H : Hamaker's constant

W (d) ~
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intferactions betwezn bodies
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Source J. Israelachvilli, "Intermolecular and surface forces"”.




Surrace-surface intreractions

Following the steps in previous slides it is possible calculate
the interaction energy of two planar surfaces a distance of 'd’
apart, specifically for the unit area of one surface interacting

with an infinite area of the other.

—27C p? TO d¢o

W(d) = —
(n-2)(n-3) L, ()"

B 27C p*

~ (n=2)(n—3)(n—4)(n—-5)d"*

For n=6

2

W, (d) = _Z(Z:CIIOZ per unit area

PURDUE



The Derjaguin approximation
Plane-plane interaction energies are fundamental
quantities and it is important to correlate tip-sample
force to known values of surface interaction energies

For a sphere-plane interaction we saw that
Ar°Cp°R

W(d) =- ¥ .
(n-2)(n-=3)(n-4)(n-5)d">
F(d)z—dﬂ:— Az Cp°Ry,

dd (n-2)(n-3)(n—-4)d"™

Comparing with previous slide we see that
F(d) — 27R, W (d)

sphere—plane planes

tip

I't can be shown that for two interacting sphere of
different radii

R.R
F(d )sphere—sphere = 2”[ —2

jW (d )planes

1+ 2
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Irmplications of Derjaguin's
approximation
We showed this for W(r)=-C/r" however it is valid for any

force law, attractive, or repulsive or oscillatory for two
rigid spheres
For two spheres in contact d=c, the value of W(o) is basically

2y,, the conventional surface energy per unit area of a
solid surface.Thus:

F (o)=F =

sphere—sphere adhesion

27Z.VVpIane—pIane (G)

1 1

(ElJFR—Z)

This approximation is very useful while converting measured
F.qin AFM experiments to surface energy

d=
Wplanes \ 7 d
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Snort ranaz cnermical forces
v . Giessibl (2003)

FIG. 6. (Color in online edition) Schematic view of an AFM
tip close to a sample. Chemical short-range forces act when tip
and sample orbitals (crescents) overlap. Long range forces (in-
dicated with arrows) originate in the full volume and surface of
the tip and are a critical function of the mesoscopic tip shape.

A prototype of the covalent chemical bond can be arrived at from quantum
mechanical calculations for a H,* ion (Israelachvili 1991). The Morse

potential describes a chemical bond with bonding energy E, .4, equilibrium
distance ¢ and decay length k. With a proper choice of the parameters the
Morse potential is an excellent fit for the exact solution of the H,* problem.

EMorse (r) — _Ebond (Ze_K(r_a) o e_ZK(r_G))
The Lennard-Jones potential has an attractive term from van der Waals
forces and a short range repulsive term

p 6 - 12
ELennard—Jones (r) = _Ebond 2 L—j — (_2

The Stillinger-Weber and Tersoff potentials ta & into account the
directionality of chemical bonds also, and have been used to explain

subatomic features in Si images
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ConTinuurm descripTion oT conTacT

If the contact area involves tens or hundreds of atoms the description of
net repulsive force is best captured by continuum elasticity models
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Fig. 8, Deformation of an elastic sphere on a flat surface following Hertz and JKR theory. The profile of the spherical tip in
the DMT theory is the same as in the Hentz theory. F is the loading force, R the radius of the sphere, v the distance from the
center of the contact area, & the penetration depth, ay.n, and @k are the contact radius following the Hertz and the JKR
theories.

Hertz (1881) takes into account neither surface forces nor adhesion, and
assumes a linearly elastic sphere indenting on a elastic surface

Sneddon'’s analysis considers a rigid sphere or other rigid shapes on a
linearly elastic half space. Neither theory however considers surface forces

Bradley analysis considers two rigid spheres interacting with the Lennard-Jones

potential; Derjaguin-Mdller-Toporov (DMT) considers elastic sphere with rigid
surface but includes van der Waals forces outside the contact region;

Johnson-Kendall-Roberts (JKR) neglects long-range interactions outside contact

area but includes short-range forces in the contact area;
Maugis theory is even more accurate
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Work of adhesion and cohesion: work done to separate unit
areas of two media 1 and 2 from contact to infinity in
vacuum. If 1 and 2 are different then Wy, is the work of
adhesion; if 1 and 2 are the same then Wy is the work of
cohesion.

Surface energy: This is the free energy change y when the
surface area of a medium is increased by unit area. Thus
Wy, =2y,

While separating dissimilar materials the free energy change
in expanding the “interfacial” area by unit area is known as
their interfacial energy 7.,

Wy, =n+7,— 7
Work of adhesion in a third medium

Wi, = Vi3 + Va3 — 712
PURDUE "



Tip-sample adnesion
(a) (b) Equilibrium (c) Pull-of f

3

D¢ 1
T sample 2 J TT as J

Rigid tip-rigid sample  Deformable tip and rigid sample*

From the Derjaguin approximation for rigid tip interacting

with rigid sample we have
(0) = Faghesion = 27R ;W (o) ~ 27Z-RtipW132 = 277Rtip (713 + V23 — 712)

|:tip—sample tip

Real tips and samples are not rigid. Several theories are
used for this (Hertz, DMT, JKR)

* These theories also apply to elastic samples, they are just
shown on rigid sample to demonstrate key quantities clearly.

For example D is the combined tip-sample deformation in (b)
PURDUE 2



Flertz vs. DT vs. JER

Hertz DMT JKR

a % %
[F;ﬁpF} ( Ry, (F + 27thpW132)Jy [ Ryp (F + 2R, Wiy, +BZR W, o,F +(37R Wy, )’ )] i

tot Etot Etot
D 1/3 1/3
a® [ F? a2 [(F+ 27th,pW132 ) a? 2 [6aW,a
Rt|p Rtlp Etot Rtip Rtlp Etot Rtip 3 Etot
Fad O ZTCR-HPW132 37'CRﬁPW132/2
1 3[1—1/32 1—vt2]
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Co ntact orces

1--||11||1 —IrrH—H- I o

d: normalized penetration

A: normalized contact area _’I_
F: normalized force 1
T

(I}

Butt, Cappella and Kappl | **

Fig. 9. The dependence of 4 on & (panel (a)} and the dependence of F on & (panel (b)) as functionals of A calculated using

Maugis theory. The JKR [30] and the DMT [29] limits are indicated. 4. F, and & are the dimensionless contact radius foqoe
o7 and penetration depth given by Eqgs. (2.11a)~(2.11c}.



)

imple tip-sample interaction models

van der Waals force + DMT contact

( —%, (for z > ag)
Fz(Z) = AR 4 3/2
642 + gE*\/ﬁ(aO — z) / , (for z < ag)

A : Hamaker constant (Si-HOPG)
R : Tip radius
E* : Effective elastic modulus

a, : Intermolecular distance

sample
Raman et al, Phys Rev B (2002), Ultramicroscopy (2003)
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Comments on these tneories

(

JKR predicts infinite stress at edge of contact circle.
In the limit of small adhesion JKR -> DMT

Most equations of JKR and Hertz and DMT have been
tested experimentally on molecularly smooth surfaces
and found to apply extremely well

Most practical limitation for AFM is that no tip is a
perfect smooth sphere, small asperities make a big
difference.

Hertz, DMT describe conservative interaction forces,
but in JKR, the interaction itself is non-conservative
(why?) ...for a force to be considered conservative it
has to be describable as a gradient of potential energy.
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Next lectur

(\

Couple cantilever mechanics to tip sample interaction forces
F-Z vs. F-d curves
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