Lecture 8 Interaction forces II – Tip-sample interaction forces

Arvind Raman Mechanical Engineering Birck Nanotechnology Center

1

Summary of last lecture

PURDUE

Adapted from J. Israelachvilli, "Intermolecular and surface forces".

From interatomic to tip-sample interactions-simple theory

First consider the net interaction between an isolated atom/molecule and a flat surface.

Assume that the pair potential between the atom/molecule and an atom on the surface is given by $U(r)=-C/r^n$.

Assume additivity, that is the net interaction force will be the sum of its interactions with all molecules in the body.

No. of atoms/molecules in the infinitesimal ring are $2\pi\rho x dx dz$ where ρ is the number density of molecules/atoms in the surface

From interatomic to tip-sample interactions-simple theory

Next integrate atom-plane interaction over the volume of all atoms in the AFM tip. Number of atoms/molecules contained within the slice shown below is $\pi\rho x^2 d\zeta = \pi\rho(2R_{tip}-\zeta)\zeta d\zeta$. Since all these are at the same equal distance d+ ζ from the plane, the net interaction energy can be derived by using the result on the previous slide.

$$W(d) = \frac{-2\pi^{-}C\rho^{-}}{(n-2)(n-3)} \int_{\zeta=0}^{+} \frac{(2R_{tip} - \zeta)\zeta d\zeta}{(d+\zeta)^{n-3}}$$

If $d << R_{tip}$,

$$W(d) \sim \frac{-2\pi^{2}C\rho^{2}}{(n-2)(n-3)} \int_{\zeta=0}^{\zeta=\infty} \frac{R_{tip}\zeta d\zeta}{(d+\zeta)^{n-3}}$$

$$= -\frac{4\pi^{2}C\rho^{2}R_{tip}}{(n-2)(n-3)(n-4)(n-5)d^{n-5}}$$

For $d << R_{tip}$, $n = 6$

$$W_{VdW}(d) \sim -\frac{\pi^{2}C\rho^{2}R_{tip}}{6d} = -\frac{HR_{tip}}{6d}$$

H : Hamaker's constant

VdW interactions between bodies

Source J. Israelachvilli, "Intermolecular and surface forces".

Surface-surface interactions

Following the steps in previous slides it is possible calculate the interaction energy of two planar surfaces a distance of 'd' apart, specifically for the unit area of one surface interacting with an infinite area of the other.

$$W(d) = \frac{-2\pi C\rho^2}{(n-2)(n-3)} \int_{\zeta=d}^{\zeta=\infty} \frac{d\zeta}{(\zeta)^{n-3}}$$
$$= -\frac{2\pi C\rho^2}{(n-2)(n-3)(n-4)(n-5)d^{n-4}}$$
For $n = 6$
$$W_{VdW}(d) = -\frac{\pi C\rho^2}{12d^2} \text{ per unit area}$$

The Derjaguin approximation Plane-plane interaction energies are fundamental quantities and it is important to correlate tip-sample force to known values of surface interaction energies

For a sphere-plane interaction we saw that

$$W(d) = -\frac{4\pi^2 C\rho^2 R_{tip}}{(n-2)(n-3)(n-4)(n-5)d^{n-5}}$$
$$F(d) = -\frac{dW}{dd} = -\frac{4\pi^2 C\rho^2 R_{tip}}{(n-2)(n-3)(n-4)d^{n-4}}$$

Comparing with previous slide we see that $F(d)_{sphere-plane} = 2\pi R_{tip} W(d)_{planes}$

It can be shown that for two interacting sphere of different radii

$$F(d)_{sphere-sphere} = 2\pi \left(\frac{R_1 R_2}{R_1 + R_2} \right) W(d)_{planes}$$

Implications of Derjaguin's approximation

- We showed this for W(r)=-C/rⁿ however it is valid for any force law, attractive, or repulsive or oscillatory for two rigid spheres
- For two spheres in contact d=σ, the value of W(σ) is basically 2_{γ12} the conventional surface energy per unit area of a solid surface. Thus:

$$F_{\text{sphere-sphere}}(\sigma) = F_{\text{adhesion}} = \frac{2\pi W_{\text{plane-plane}}(\sigma)}{(\frac{1}{R_1} + \frac{1}{R_2})}$$

This approximation is very useful while converting measured F_{ad} in AFM experiments to surface energy

FIG. 6. (Color in online edition) Schematic view of an AFM tip close to a sample. Chemical short-range forces act when tip and sample orbitals (crescents) overlap. Long range forces (indicated with arrows) originate in the full volume and surface of the tip and are a critical function of the mesoscopic tip shape.

A prototype of the covalent chemical bond can be arrived at from quantum mechanical calculations for a H₂⁺ ion (Israelachvili 1991). The Morse potential describes a chemical bond with bonding energy E_{bond}, equilibrium distance σ and decay length κ. With a proper choice of the parameters the Morse potential is an excellent fit for the exact solution of the H₂⁺ problem.

$$E_{Morse}(r) = -E_{bond} \left(2e^{-\kappa(r-\sigma)} - e^{-2\kappa(r-\sigma)}\right)$$

The Lennard-Jones potential has an attractive term from van der Waals forces and a short range repulsive term

$$E_{Lennard-Jones}(r) = -E_{bond}\left(2\left(\frac{\sigma}{r}\right)^{6} - \left(\frac{\sigma}{r}\right)^{12}\right)$$

The Stillinger-Weber and Tersoff potentials take into account the directionality of chemical bonds also, and have been used to explain subatomic features in Si images
PURDUE

Continuum description of contact

If the contact area involves tens or hundreds of atoms the description of net repulsive force is best captured by continuum elasticity models

Capella & Dietler

Fig. 8. Deformation of an elastic sphere on a flat surface following Hertz and JKR theory. The profile of the spherical tip in the DMT theory is the same as in the Hertz theory. F is the loading force, R the radius of the sphere, y the distance from the center of the contact area, δ the penetration depth, a_{Hertz} and a_{JKR} are the contact radius following the Hertz and the JKR theories.

- Hertz (1881) takes into account neither surface forces nor adhesion, and assumes a linearly elastic sphere indenting on a elastic surface
- Sneddon's analysis considers a rigid sphere or other rigid shapes on a linearly elastic half space. Neither theory however considers surface forces
- Bradley analysis considers two rigid spheres interacting with the Lennard-Jones potential; Derjaguin-Müller-Toporov (DMT) considers elastic sphere with rigid surface but includes van der Waals forces outside the contact region; Johnson-Kendall-Roberts (JKR) neglects long-range interactions outside contact area but includes short-range forces in the contact area;
- Maugis theory is even more accurate

Adhesion

- Work of adhesion and cohesion: work done to separate unit areas of two media 1 and 2 from contact to infinity in vacuum. If 1 and 2 are different then W_{12} is the work of adhesion; if 1 and 2 are the same then W_{11} is the work of cohesion.
- Surface energy: This is the free energy change γ when the surface area of a medium is increased by unit area. Thus

$$W_{11} = 2\gamma_1$$

While separating dissimilar materials the free energy change in expanding the "interfacial" area by unit area is known as their interfacial energy Y₁₂

$$W_{12} = \gamma_1 + \gamma_2 - \gamma_{12}$$

Work of adhesion in a third medium

$$W_{132} = \gamma_{13} + \gamma_{23} - \gamma_{12}$$

Rigid tip-rigid sample

Deformable tip and rigid sample*

From the Derjaguin approximation for rigid tip interacting with rigid sample we have

 $F_{tip-sample}(\sigma) = F_{adhesion} = 2\pi R_{tip} W(\sigma) \sim 2\pi R_{tip} W_{132} = 2\pi R_{tip} (\gamma_{13} + \gamma_{23} - \gamma_{12})$

- Real tips and samples are not rigid. Several theories are used for this (Hertz, DMT, JKR)
- * These theories also apply to elastic samples, they are just shown on rigid sample to demonstrate key quantities clearly. For example D is the combined tip-sample deformation in (b) PURDUE

Hertz vs. DMT vs. JKR

$$\frac{1}{E_{tot}} = \frac{3}{4} \left(\frac{1 - v_s}{E_s} + \frac{1 - v_t}{E_t} \right)$$

Fig. 9. The dependence of \overline{A} on $\overline{\delta}$ (panel (a)) and the dependence of \overline{F} on $\overline{\delta}$ (panel (b)) as functionals of λ calculated using **P** Maugis theory. The JKR [30] and the DMT [29] limits are indicated. \overline{A} , \overline{F} , and $\overline{\delta}$ are the dimensionless contact radius, force and penetration depth given by Eqs. (2.11a)-(2.11c).

Simple tip-sample interaction models

van der Waals force + DMT contact

$$F_i(z) = \begin{cases} -\frac{AR}{6z^2}, & \text{(for } z > a_0) \\ -\frac{AR}{6a_0^2} + \frac{4}{3}E^*\sqrt{R}(a_0 - z)^{3/2}, & \text{(for } z \le a_0) \end{cases}$$

- A: Hamaker constant (Si-HOPG)
- **R** : Tip radius
- E^* : Effective elastic modulus
- a_0 : Intermolecular distance

Raman et al, Phys Rev B (2002), Ultramicroscopy (2003)

Comments on these theories

- JKR predicts infinite stress at edge of contact circle.
- In the limit of small adhesion JKR -> DMT
- Most equations of JKR and Hertz and DMT have been tested experimentally on molecularly smooth surfaces and found to apply extremely well
- Most practical limitation for AFM is that no tip is a perfect smooth sphere, small asperities make a big difference.
- Hertz, DMT describe conservative interaction forces, but in JKR, the interaction itself is non-conservative (why?) ...for a force to be considered conservative it has to be describable as a gradient of potential energy.

Couple cantilever mechanics to tip sample interaction forces
F-Z vs. F-d curves

