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Summary of last lecture
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r

Type of interaction
Ion-ion electrostatic

Dipole-charge electrostatic

Dipole-dipole electrostatic

Angle-averaged electrostatic (Keesom force)

Angle-averaged induced polarization force (Debye force)

Dispersion forces act between any two molecules or atoms
(London force)
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Adapted from J. Israelachvilli, “Intermolecular and surface forces”.



From interatomic to tip-sample           
interactions-simple theory

First consider the net interaction between an isolated atom/molecule   
and a flat surface.
Assume that the pair potential between the atom/molecule and an atom 
on the surface is given by U(r)=-C/rn.
Assume additivity, that is the net interaction force will be the sum of   
its interactions with all molecules in the body.
No. of atoms/molecules in the infinitesimal ring are 2πρxdxdz where ρ
is the number density of molecules/atoms in the surface
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From interatomic to tip-sample           
interactions-simple theory

Next integrate atom-plane interaction over the volume of all atoms in   
the AFM tip. Number of atoms/molecules contained within the slice      
shown below is πρx2dζ=πρ(2Rtip-ζ)ζdζ. Since all these are at the same    
equal distance d+ζ from the plane, the net interaction energy can be     
derived by using the result on the previous slide.
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VdW interactions between bodies

5Source J. Israelachvilli, “Intermolecular and surface forces”.



Surface-surface interactions
Following the steps in previous slides it is possible calculate     
the interaction energy of two planar surfaces a distance of ‘d’ 
apart, specifically for the unit area of one surface interacting 
with an infinite area of the other.
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The Derjaguin approximation
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Plane-plane interaction energies are fundamental            
quantities and it is important to correlate tip-sample 
force to known values of surface interaction energies
For a sphere-plane interaction we saw that

Comparing with previous slide we see that 

It can be shown that for two interacting sphere of    
different radii 
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Implications of Derjaguin’s
approximation
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 We showed this for W(r)=-C/rn however it is valid for any      
force law, attractive, or repulsive or oscillatory for two         
rigid spheres

 For two spheres in contact d=σ, the value of W(σ) is basically 
2γ12 the conventional surface energy per unit area of a            
solid surface.Thus:

This approximation is very useful while converting measured     
Fad in AFM experiments   to surface energy 
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 A prototype of the covalent chemical bond can be arrived at from quantum   
mechanical calculations for a H2

+ ion (Israelachvili 1991). The Morse            
potential describes a chemical bond with bonding energy Ebond, equilibrium  
distance σ and decay length κ. With a proper choice of the parameters the  
Morse potential is an excellent fit for the exact solution of the H2

+ problem.

 The Lennard-Jones potential has an attractive term from van der Waals        
forces and a short range repulsive term

 The Stillinger-Weber and Tersoff potentials take into account the                    
directionality of chemical bonds also, and have been used to explain              
subatomic features in Si images

Short range chemical forces
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Continuum description of contact
 If the contact area involves tens or hundreds  of atoms the description of                    

net repulsive force  is best captured by continuum elasticity models

 Hertz (1881) takes into account neither surface forces nor adhesion, and           
assumes a  linearly elastic sphere indenting on a elastic surface

 Sneddon’s analysis considers a rigid sphere or other rigid shapes on a                   
linearly elastic half space.  Neither  theory however considers surface forces

 Bradley analysis considers two rigid spheres interacting with the Lennard-Jones       
potential; Derjaguin-Müller-Toporov (DMT) considers elastic sphere with rigid   
surface but includes van der Waals forces outside the contact region;                                     
Johnson-Kendall-Roberts (JKR) neglects long-range interactions outside contact       
area but includes short-range forces in the contact area; 

 Maugis theory is even more accurate

Capella & Dietler

10



Adhesion
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 Work of adhesion and cohesion: work done to separate unit   
areas of two  media 1 and 2 from contact to infinity in           
vacuum. If 1 and 2 are different then W12 is the work of       
adhesion; if 1 and 2 are the same then W11 is the work of      
cohesion.

 Surface energy: This is the free energy change γ when the      
surface area of a medium is increased by unit area. Thus 

 While separating dissimilar materials the free energy change 
in expanding the “interfacial” area  by unit area is known as   
their interfacial energy 

 Work of adhesion in a third medium

11 12W γ=
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Tip-sample adhesion
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 From the Derjaguin approximation for rigid tip interacting    
with rigid sample we have

 Real tips and samples are not rigid. Several  theories are       
used for this (Hertz, DMT, JKR)

 * These theories also apply to elastic samples, they are just  
shown on rigid sample to demonstrate key quantities clearly. 
For example D is the combined tip-sample deformation in (b) 
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Hertz vs. DMT vs. JKR
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Contact forces
Ã: normalized contact area

d: normalized penetration

F: normalized force

Butt, Cappella and Kappl
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Simple tip-sample interaction models

 van der Waals force + DMT contact

A : Hamaker constant (Si-HOPG)
R : Tip radius 
E* : Effective elastic modulus
a0 : Intermolecular distance

Rtip

a0

sample

z
z

Raman et al, Phys Rev B (2002), Ultramicroscopy (2003)
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Comments on these theories
 JKR predicts infinite stress at edge of contact circle.
 In the limit of small adhesion JKR -> DMT
 Most equations of JKR and Hertz and DMT have been  

tested experimentally on molecularly smooth surfaces   
and found to apply extremely well

 Most practical limitation for AFM is that no tip is a      
perfect smooth sphere, small asperities make a big      
difference.

 Hertz, DMT describe conservative interaction forces, 
but in JKR, the interaction itself is non-conservative    
(why?) …for a force to be considered conservative it   
has to be describable as a gradient of potential energy.

17



Next lecture
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 Couple cantilever mechanics to tip sample interaction forces
 F-Z vs. F-d curves
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