Lecture 13
Point mass models, modzling AM-
AFM

Arvind Raman
Mechanical Engineering
Birck Nanotechnology Center
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AM=-AFM (aka Tapping Mode, IC mode)

Ainit J ¢ init
%Z approach

- A b :> Scannlng
A 6] :> )t 1

Key points

“ Drive frequency is always fixed ®, usually
near @y

“ During approach A, ¢ change due to
tip-sample interaction forces

®  During scan ¢ is a free variable and
changes naturally while scanning
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y(t)

base motion Acoustic

(inertial or
piezo)

X(t)
Absolute
tip motion

acoustically excited levers

mX = —k(X —y) —cX

X 1 i k M
X+ X = y(t); with =,/—, = &
2 Q y() a)O m Q C

@; @,

Measured motion z(t) = x(t) — y(t)
74 y 1 .

—+Z+ 2 =——5— y

Wy @,Q w,  @,Q

y(t) =Y, sin(wt)

zP (t) — ASln(C()t T ¢inertial)
| Hinertial (C()) |: Yi - [ ' 2+2(r / Q) 2 j
0 A-r") " +(r/Q)

_eand Q
¢inertial (C()) = tan [r(l-l- Q2r2 . QZ))

(6D
wherer = —

®g iS The natural freq, o is the drive freq
Maximum amplitude occurs when o>wg)
Base motion amplitude at r=1is A/Q!
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For Q=100, see response above

Asymmetric peak, amplitude greater
when o>,
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Magnetic

< \ Magnetic

P orce
X(t) > Frnag(t)
Absolute
tip motion| .

directly

mX = —kx cx + Fag (O

X 1 . 1 k
— t X+ X = mag
@5 @,Q Kk

Measured motion = x(t)
Frag (1) = F, sin(ot)

xP (t) = ASin(C()t - ¢magnetic)

m

| H oy (@) |=

1 1/2
/k [(1 r? )2+(r/Q)2j

Prnag (@) = tan™ [ ? —1)j

where r =

@ g

wg is the natural freq, o is the drive freq
Maximum amplitude occurs when w<o

For o<<wg A=F, /Kl

mag
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), with o, =,|—,Q =

excited AFM levers
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irectly excited AFM levers
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r=wg

Asymmetric response with greater
amplitude when o<o,)

Classical phase response
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Driven point mass model with tip-sarmple

1

Magnetic
orce
- Fmag(T)

IE:

x(*)
d(H)=Z+x(1) a

inreracrion

Magnetic
mX = —kx —cx + K, (t) + F, (Z + x(1))
1

% 1 .
o7 T o ¥ = (Frg O+ Ra(Z 4 x));

: m
with @, = %,Q: Zoo

Measured motion = x(t)
Frag (D = K, sin(ot)

Acoustic excitation

ESUUNE S T S A GO RE(0)
Wy on Wy a)oQ wy

Highly nonlinear ordinary differential equation
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Linzarized analysis

Magnetic excitation

L oix+ >'<=1(|:0 s(wt) + Fo (Z +x());  d®)=Z+x(1) @
@} @, k

At a given Z the equilibrium deflection is

x*:%FtS(Z+x*) where d*=Z+x* (2)
Let Xx(t)=x*+X(1) (3)

Include,time —dependent terms

M+(Y+x*)+

(X Jr/g)z %(FO sin(ewt) + F (Z + X *+X))  (4)

w, @,
X _ 1 - 1 . _
S+ (X+x*)+ X :—(FO S|n(cot)+FtS(Z+x*+x)) (5)
@} @, Kk

If X <<Z+x*or when X <<d?* then

;+ X + 1(F sin(wt) + E{Z+=Xx*)+ F(d) Yj (6)
@, k 8d dd*

f—

X 1 oF (d) _ 1 - 1 :
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Linzarized analysis
X[ L1R@ (o, 1. Lo oo |
o} k od | .. X+ 2,Q X _E(Fo sin(at)) T
Or
2 F.(d)
= oF, (d _ W, - _ t —
X + (1_%%(”*}( +%x :al)(—O(FO sm(a)t)) ’ 5 F=kx
N2 )2 _iaFts(d) * -
W, = W, (1 k—ad dd*) d A! X* =d
aF aF’[S -
>0 od |,

When aj

o ld=d*
attractive force
and natural

fr'equ%Fncy decreases
When_;1 <0 rep.

. d=d*
regime and natural

frequency increases
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VAR
| ﬁu g EINSVAN
Frequency

Attractive gradient equivalent to additional spring in tension attached
to tip, reducing the cantilever resonance frequency.

Ll
Frequency

Repulsive gradient equivalent to additional spring in compression attached
to tip, increasing the cantilever resonance frequency.

mplitude

A

Amplitude




Limitations of the linearized analysis

Fs(d)

t

F=kx

oF

ts

od | _,.

X(t)=A cos(wt-¢)

For what driven oscillation amplitude
is this approximation valid?
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cxpezriments with conventional tips
Si tip / HOPG sample z=90 nm, frequency sweep

~ 400 '
Laser Oscillator
N | EG&c 7260
Deflection Lock-In
Bimorph Detector 5 ADC
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When brought closer to sampleE

PURDUE Sometimes sticks to the sampleL e et al, Phys Rev B (2002)
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Pnysical mechanisms

repulsije
UvdW+DMT

(eVis
S

o

Tip-sample distance

o

\ Attractive (van der Waals)

4 Displacement Z

P n
l -

Ucantilever \

d d (nm)

T
otal potel_r\ltlal energy
(4 o

o

Total potential energy from interaction + beam
elasticity

Number of equilibria changes with Z
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Free oscillations Forced response
Softening-hardening

%\00 ‘ 34 Backbonel .- gt
2 Sl E
>50 S : =
= = ; = ) z
2 = ; < ‘//L
2o * t = 5 =
£ 0 2 4 6 8 10 Natural (fund) freg Exc. Freq (Q)
510 o, 4
+= ZF2 N 0 . o
o ©| Softening =
3 5 8| Backbone! sl M
2 1= ¢ <
O | ] C|D > i >
0 2 4 6 Natural (fund) freg Exc. Freq (Q)
n* (nm) Raman et al, Proc. Roy. Soc. London (2003)

Softening nonlinearity <>van der Waals forces (attractive)
= Hardening nonlinearity < sample elasticity (repulsive)



Irmplications for AM-AFM

= Consider the following dynamic approach retract curves using VEDA
(parameters following example in Garcia and Perez)

The dependence of the low and high oscillation solutions on the rest of the tip-surface separation for
a system characterised by R, Aq, fo =f. k. O, H, y and E" of 20 nm, 10 nm. 350 kHz, 40 N/m. 400,
6.4 x 107" J, 30 mJ/m” and 1.51 GPa, respectively, are plotted in Fig. 7(a). The collection of L and H

A_1 {nm}
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Mean force (nN)
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Recognizing atiractive and
repulsive regimes
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istance (nm)

In attractive regime, phase lag is greater
than 90 degrees while in repulsive regime it
is less than 90 degrees
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Attractive-repulsive
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Z piezo displacement (nm) f; H branch
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" Soft cantilevers, small
amplitudes-> more
attractive regime

= Stiff levers, larger
ampliTudes -> repulsive
regime

Fig. 11. Experimental dﬂtﬂrmmatmn of the I-::w and high amplitude branches. (a) Amplltudﬂ curve, the L. and H branches are
plotted by open circles. Dashed lines indicate the A, values used to image a 200 x 200 nm~ * InAs quantum dot sample. (b) The
system evolves from stable imaging in the L state .4.,,,:. = 16 nm (top) to unstable imaging due to switching between H and L
states Ag, = 13.8 nm (middle) and finally to stable imaging in the H state Ay = 9.5 nm (bottom). Adapted from [56].
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