Lecture 12 Introduction to dynamic AFM - point mass approximation

Arvind Raman

Mechanical Engineering

Birck Nanotechnology Center

Contact Mode Imaging \mathbf{X}

First tip contacts surface with some setpoint normal force which is kept constant during the scan

Contact Mode Imaging

PURDUE

First tip contacts surface with some setpoint normal force which is kept constant during the scan

Friction Force Microscopy

- Torsional deflections due to atomic and molecular friction
- Lateral forces are specific
- Applications to nanotribology, probe based lithography

Friction force image of a self assembled monolayer (Riefenberger Group)

www.chem.nwu.edu/~mkngrp/
Dip-pen lithography

Contact mode oxidation lithography

Dynamic AFM

- Cantilever driven near resonance
- The cantilever's resonant frequency, phase and amplitude are affected by short-scale force gradients
- In Amplitude Modulated AFM (AM-AFM) or tapping mode, driving frequency is fixed while cantilever approaches the sample
- In Frequency Modulated AFM (FM-AFM) the phase and amplitude are held constant while approaching the sample

Dynamic AFM

- Cantilever driven near resonance
- The cantilever's resonant frequency, phase and amplitude are affected by short-scale force gradients
- In Amplitude Modulated AFM (AM-AFM) or tapping mode, driving frequency is fixed while cantilever approaches the sample
- In Frequency Modulated AFM (FM-AFM) the phase and amplitude are held constant while approaching the sample

The point mass model

$$w(x,t) = A \sin(\omega t) \psi(x)$$

$$\psi(x) = \cos(\beta \frac{x}{L}) - \cosh(\beta \frac{x}{L}) - \frac{\cos(\beta) + \cosh(\beta)}{\sin(\beta) + \sinh(\beta)} \left[\sin(\beta \frac{x}{L}) - \sinh(\beta \frac{x}{L}) \right]$$

$$\theta/\delta=?$$

Point mass model

- Tip is massive, cantilever inertia negligible
- Replace cantilever by a spring of spring constant= static bending stiffness of lever
- ... Cantilever oscillates such that $\theta/\delta=2L/3$

Point mass model - free oscillations

$$m\ddot{x} = -kx - cx$$

$$m\ddot{x} = -kx - c\dot{x}$$

Damping

coefficient

Spring

$$\frac{\ddot{x}}{\omega_0^2} + x + \frac{1}{\omega_0 O} \dot{x} = 0; w$$

$$\frac{\ddot{x}}{\omega_0^2} + x + \frac{1}{\omega_0 Q} \dot{x} = 0; \text{ with } \quad \omega_0 = \sqrt{\frac{k}{m}}, Q = \frac{m\omega_0}{c} = \frac{\sqrt{mk}}{c}$$

General solution of type

$$x(t) = e^{\lambda t} \Rightarrow \frac{\lambda^2}{\omega_0^2} + 1 + \frac{\lambda}{\omega_0 Q} = 0 \Rightarrow \lambda_{1,2} = -\frac{\omega_0'}{2Q} \pm \omega_0 \sqrt{\frac{1}{4Q^2} - 1}$$

x(t)
Absolute tip motion
$$x(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}$$
, integration constants to be determined from initial conditions $x(0)$, $\dot{x}(0)$

if $Q > \frac{1}{2}$ Underdamped oscillation

- Damped natural frequency is different from natural frequency
- Q can be regarded as number of oscillation cycles before transients become small

Forced vibrations

a. Acoustic excitation

b. Magnetic excitation

- Mechanical (acoustic or piezo excitation)
- Magnetic excitation
- Magnetostrictive excitation
- Photothermal excitation
- Lorentz force excitation
- Ultrasound excitation
- Direct piezoelectric excitation

Response of acoustically excited levers

$$m\ddot{x} = -k(x - y) - c\dot{x}$$

Acoustic (inertial or piezo)

$$\frac{\ddot{x}}{\omega_0^2} + x + \frac{1}{\omega_0 Q} \dot{x} = y(t); \text{ with } \omega_0 = \sqrt{\frac{k}{m}}, Q = \frac{m\omega_0}{c}$$

Measured motion z(t) = x(t) - y(t)

$$\frac{z}{\omega_0^2} + z + \frac{1}{\omega_0 Q} \dot{z} = -\frac{y}{\omega_0^2} - \frac{1}{\omega_0 Q} \dot{y}$$

$$y(t) = Y_0 \sin(\omega t)$$

$$z^p(t) = A \sin(\omega t - \phi_{inertial})$$

$$|H_{inertial}(\omega)| = \frac{A}{Y_0} = \left(\frac{r^4 + (r/Q)^2}{(1 - r^2)^2 + (r/Q)^2}\right)^{1/2}$$

$$\phi_{inertial}(\omega) = \tan^{-1} \left(\frac{Q}{r(1 + Q^2 r^2 - Q^2)}\right)$$

where
$$r = \frac{\omega}{\omega_0}$$

- ω_0 is the natural freq, ω is the drive freq
- Maximum amplitude occurs when $\omega > \omega_0!$
- Base motion amplitude at r=1 is A/Q!

Response of acoustically excited levers

- For Q=100, see response above
- Asymmetric peak, amplitude greater when $\omega > \omega_0$

Response of directly excited AFM levers

$$m\ddot{x} = -kx - c\dot{x} + F_{mag}(t)$$

$$\frac{\ddot{x}}{\omega_0^2} + x + \frac{1}{\omega_0 Q} \dot{x} = \frac{1}{k} F_{mag}(t); with \quad \omega_0 = \sqrt{\frac{k}{m}}, Q = \frac{m\omega_0}{c}$$

$$F_{mag}(t) = F_0 \sin(\omega t)$$
$$x^p(t) = A\sin(\omega t - \phi)$$

$$|H_{mag}(\omega)| = \frac{A}{F_0 / k} = \left(\frac{1}{(1 - r^2)^2 + (r / Q)^2}\right)^{3/2}$$

$$\phi_{mag}(\omega) = \tan^{-1}\left(\frac{r}{Q(r^2 - 1)}\right)$$
where $r = \frac{\omega}{\omega_0}$

- ω_0 is the natural freq, ω is the drive freq
- Maximum amplitude occurs when $\omega < \omega_0!$
- For $\omega << \omega_0 A = F_{mag}/k!$

Response of directly excited AFM levers

- Asymmetric response with greater amplitude when $\omega < \omega_0!$
- Classical phase response

Driven point mass model with tip-sample interaction

Magnetic

$$m\ddot{x} = -kx - c\dot{x} + F_{mag}(t) + F_{ts}(Z + x(t))$$

$$\frac{\ddot{x}}{\omega_0^2} + x + \frac{1}{\omega_0 Q} \dot{x} = \frac{1}{k} \Big(F_{mag}(t) + F_{ts}(Z + x(t)) \Big);$$

with
$$\omega_0 = \sqrt{\frac{k}{m}}$$
, $Q = \frac{m\omega_0}{c}$

 $Measured\ motion = x(t)$

$$F_{mag}(t) = F_0 \sin(\omega t)$$

Acoustic excitation

$$\frac{\ddot{z}}{\omega_0^2} + z + \frac{1}{\omega_0 Q} \dot{z} = -\frac{\ddot{y}}{\omega_0^2} - \frac{1}{\omega_0 Q} \dot{y} + \frac{F_{ts} (Z + y(t) + x(t))}{\omega_0^2}$$

- Highly nonlinear ordinary differential equation
- What happens to frequency response when probe is brought close to sample?

Experiments with conventional tips

Si tip / HOPG sample z=90 nm, frequency sweep

When brought closer to sample the tip sometimes sticks to the sample Lee et al, Phys Rev B (2002)