Lecture 12
Introduction to dynamic AFM
- point mass approximation

Arvind Raman
Mechanical Engineering
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Contact Mode Imaging
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First tip contacts surface with some setpoint norma)
PURDUE force which is kept constant during the scan
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Friction Force Microscopy

" Torsional deflections due to atomic and
molecular friction

“ Lateral forces are specific

“ Applications to nanotribology, probe
based lithography

Friction force image ofa | K :
self assembled monolayer Contact mode oxidation
(Riefenberger Group) www.chem.nwu.edu/~mkngrp/  jithography

PURDUE Dip-pen lithography 4
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2D Point

Cantilever driven near resonance

The cantilever's resonant frequency, phase and amplitude
are affected by short-scale force gradients

In Amplitude Modulated AFM (AM-AFM) or tapping mode,
dr'ivirlng frequency is fixed while cantilever approaches the
sample

In Frequency Modulated AFM (FM-AFM) the phase and
amplitude are held constant while approaching the sample
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Cantilever driven near resonance

The cantilever's resonant frequency, phase and amplitude
are affected by short-scale force gradients

In Amplitude Modulated AFM (AM-AFM) or tapping mode,
dr'ivirltg frequency is fixed while cantilever approaches the
sample

In Frequency Modulated AFM (FM-AFM) the phase and
amplitude are held constant while approaching the sample
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The point mass model

Continuous AFM cantilever

1

w(x,t) = A sin(ot) y(x)

0/6=?

B Xy Xy cos(B)+cosh(B)| . X\ . X
w(X)—COS(ﬁL) Cosh(ﬂL) Sin(4) + sinh( ) [Sln(ﬂL) Slnh(ﬂL)}

w(x,t) = A sin(ot) y(x)

w(X) = — L [st x3 4 = L (XJZ
6EI L 2 EI (L

o 2L

s 3

Tip is massive, cantilever inertia negligible

Replace cantilever by a spring of spring constant= static
bending stiffness of lever

Cantilever oscillates such that 6/6=2L/3

Point mass model
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1.

X nJJ | = free oscillations

mX =
Lz+x+ix 0, with o, = \/7 Q—%zﬁ
@, @,Q C C
General solution of type
2 '
X(t) = ¢ :>/1—+1+L—0:>A12 % — T o, iz—
@  oQ 2Q 4Q
X(t) = ce™ +c,e”, integration constants to be determined from initial conditions x(0), X(0)
L, I X(0) + o, x2(0) I
1 x(t)=e | x(0)cos| [1-— eyt |+ Q cos| [1-— ot
4Q 1 4Q
1-— o,
4Q
1

— — -y |1t
X(t) = cle[ S ] +cze[ 2 ] if Q <%Overdamped oscillation

Damped natural frequency is different from natural frequency
Q can be regarded as number of oscillation cycles before transients

become small
PURDUE



Forced vibrations

Cantilever

Sample Plate
a. Acoustic excitation

Cantilever

Sample plate with .

magnetic solenoid

b. Magnetic excitation

* Mechanical (acoustic or
piezo excitation)

“ Magnetic excitation

“ Magnetostrictive
excitation

Photothermal excitation
" Lorentz force excitation
Ultrasound excitation

Direct piezoelectric
excitation
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Response of acoustically excited levers
mX = —k(X —y) —cx
X ] k M,
_ Lz+x+ 1 X = y(1); with a)oz'/—,Q: 0
y(t) _ l Acoustic @ a)OQ m C
base motion \ Sineir:)al ° Measured motion z(t) = x(t) — y(t)
y4 1 . y 1 .
—+Z+ 2 =——5— y
@y @, Q Wy @, Q

y(t) =Y, sin(wt)
zP (t) — ASIn(a)t T ¢inertial )

He (@) Ao Q) j
inertial Yo (1_r2)2 +(r/Q)2

_ tan-l Q
¢inertial (a)) = tan (r(l-l- erz . QZ))

(4D
wherer = —

@ g
wg is The natural freq, o is the drive freq
Maximum amplitude occurs when o>

Base motion amplitude at r=1is A/Q!
PURDUE
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For Q=100, see response above

Asymmetric peak, amplitude greater
when o>,
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Response of directly excited AFM levers
mX = —kx —cx + F (1)
Magnetic :
. N
Lz+x+ 1 _1F E (O with @, — /_,QZ @,
Wy a)oQ k m C
jf\(t;rgolu‘re ;\—1 Magnetic Measured motion = X(t)
tip motion| _ orce t) = F, sin(eot
P qug(T) mag ( ) (C() )
X (t) - ASIﬂ(a)t o ¢magnetic)

| mag( )l_

1 1/2
/k [(1—r) +(r/ Q) j

Prnag (@) = tan™ (Q(r —1)j

where r =

@ g

wg is the natural freq, o is the drive freq
Maximum amplitude occurs when w<o
For o<<wg A=F, /Kl

mag
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Asymmetric response with greater
amplitude when o<o,)

Classical phase response
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Driven point mass model with tip-sarmple
inreraction

Magnetic
mX = —kx —cx + K, (t) + F, (Z + x(1))
X 1 . 1 _
Magnetic a)—g X 0, Q X = E( I:mag (t)+ R (Z + X(t))) :
orce
) Fma (T) - k Moo
I( ? Wlth C()O == E’ Q — C 0
- Measured motion = x(t)
d(t)=Z+x(1) a _
IZ Fra (1) = F, sin(wt)

Acoustic excitation

ESUUNE S T S A GO RE(0)
Wy on Wy a)oQ wy

Highly nonlinear ordinary differential equation

What happens to frequency response when probe is
brought close to sample?

PURDUE 14



cxpezriments with conventional tips
Si tip / HOPG sample z=90 nm, frequency sweep
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When brought closer to sampleE
PURDUE sometimes sticks to the sample
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