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Outline of Lecture 10

1) Background information

2) NBTI interpreted by R-D model

3) The act of measurement and observed quantity
4) NBTI vs. Light-induced Degradation

5) Possibility of Degradation-free Transistors

6) Conclusions



Negative Bias Temperature Instability
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Characteristics of NBT| Degradation
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Basics of NBTI Model
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Si sub.

The Reaction-Diffusion Model

X(t)

S

distance into oxide

- A
jd%: Ke (No = Nyr) —keNy (O)N

If dN./dtissmall, & N <N,,

k- N
k( I:( szNH(O)NIT
R
AN, dN, N
dt " odx?
N, (t) = LX_‘;”‘D“ “ON (%) dx
\ %




Interface traps with diffusion of atomic H
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simple differential equation gives rise to power-law !



Interface traps with H, diffusion
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Self-healing at AC stress
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H, concentration [a.u.]

NBTI relaxation
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Frequency independent degradation
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+ Both AC and DC NBTI
degradation show same
time characteristics.

+ Experiments show that
frequency independence
holds till at least 2 GHz
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NBTI model for frequency independence
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An enduring puzzle

Classical measurement
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Two different ways of measurement give two different results !



Measurement changes the NBTI degradation

What we think we do during measurement ...

5 1s 10s 100s 1000s Stress time_

What we actually do during measurement ...
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* 5 sec. measurement window (for example).  S-Rangan, Intel, IEDM 2003.

Measurement is like a variable frequency AC stress ....



More measurement & less (!) accuracy
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Actually, n=0.16 at all times (H2 diffusion), measurement delay
makes it appear n=0.25 at short times. A 40 year old puzzle
finally resolved !
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Non planar devices
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Reliability theory anticipates performance-degradation trade-off.



Performance and reliability
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Light-induced degradation in solar cells
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Reaction-diffusion model for LID
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NBTIl-aware logic and degradation-free
transistors (A. E. Islam)
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Mobility and VT-shift
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Degradation-free logic transistors ...
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Implications for CNT-based TFT reliability
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Hydrogen-free interfaces may have no interface traps ..
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The power of reaction-diffusion model
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Reaction-diffusion model produces complex
structures out of homogenous systems



Power laws, fractals, SPICE models
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Conclusions
NBTI has been one of the most important reliability challenge since
the very inception of CMOS.

The very strange properties of NBTI involving power-law time
exponent, relaxation, frequency independence arise from the
peculiar properties of reaction-diffusion models.

Initially presumed different, NBTIl in PMOS transistors and LID in a-Si
solar cells appear to arise from the same physical phenomena.

It is possible to design a degradation free transistors. Degradation-
free does not mean defect-free devices.

Finally, reaction-diffusion model appears to self-organize ordered
surfaces. If this is also true for NBTI, the entire literature of NBTI spice
model will have to be revisited.
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epilogue
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Disorder and Ohm’s law
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Theory and Application
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Nonlinear Stick Percolation
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Response of Fractal Surfaces
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Reliability and Dielectric Breakdown
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Why is reliability predictable?

distinction between Tz(0*) vs. Tgp(0)
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On random materials and biomimetic design

Life at the edge of equilibrium thermodynamics uses
geometry in remarkable ways ... description of that
geometry is essential in understanding the function of
biomimetic materials and devices
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