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Characteristics of NBTI Degradation

 n ~ 0.16 
 Ea ~ 0.5 eV
 A depends on Eox
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Basics of NBTI Model
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T = 125 0C
 2.2 V
 2.5 V
 2.8 V

Interface traps with H2 diffusion 
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Both AC and DC NBTI
degradation show same 
time characteristics. 

Experiments show that 
frequency independence 
holds till at least 2 GHz

Frequency independent degradation
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High Freq

Low Freq

Smaller duty cycle reduces VT shift …

NBTI model for frequency independence
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An enduring puzzle
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Two different ways of measurement give two different results !



1s 10s 100s 1000s Stress time 

What we think we do during measurement  … 

S. Rangan, Intel, IEDM 2003.

6s 21s 126s 1031s Stress time 

What we actually do during measurement  … 

* 5 sec. measurement window (for example). 

Measurement changes the NBTI degradation

VG

Measurement is like a variable frequency AC stress ….



Actually, n=0.16 at all times (H2 diffusion), measurement delay 
makes it appear n=0.25 at short times. A 40 year old puzzle 
finally resolved !

More measurement &  less (!) accuracy

101 102 103 104 105

100

101

 

 

∆I
D,

sa
t [%

]

Time (sec)

DC NBTI
Without delay

DC NBTI
with 50 sec delay

~t1/6



18

Outline of lecture 10

1) Background information

2) NBTI interpreted by R-D model

3) The act of measurement and observed quantity

4) NBTI vs. Light-induced Degradation

5) Possibility of Degradation-free Transistors

6) Conclusions



Reliability theory anticipates performance-degradation trade-off.
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Shimizu, JJAP ‘04

Light-induced degradation in solar cells

102 103 104 105 106

1016

1017

 

 

De
ns

ity
 o

f D
Bs

 [c
m

-3
]

LS Time [sec]

21

Light induced degradation has a time exponent of n=1/3



Reaction-diffusion model for LID
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NBTI-aware logic and degradation-free 
transistors  (A. E. Islam)
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Mobility and VT-shift
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Degradation-free logic transistors …
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Implications for CNT-based TFT reliability

4-bit decoder

27

Hydrogen-free interfaces may have no interface traps …
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The power of reaction-diffusion model

Disorder

time

Self organization
Pattern formation

Turing’s  model of Morphogenesis, 1953. 

Prigogine, “From being to becoming”, 1980.

Reaction-diffusion model produces complex 
structures out of homogenous systems

time …



Power laws, fractals, SPICE models
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Conclusions
NBTI has been one of the most important reliability challenge since 
the very inception of CMOS.

The very strange properties of NBTI involving power-law time 
exponent, relaxation, frequency independence arise from the 
peculiar properties of reaction-diffusion models.

Initially presumed different, NBTI in PMOS transistors and LID in a-Si 
solar cells appear to arise from the same physical phenomena. 

It is possible to design a degradation free transistors. Degradation-
free does not mean defect-free devices. 

Finally, reaction-diffusion model appears to self-organize ordered 
surfaces. If this is also true for NBTI, the entire literature of NBTI spice 
model will have to be revisited. 



epilogue
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Disorder and Ohm’s law
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Theory and Application

Percolation
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Nonlinear Stick Percolation 
for Electronic Devices
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Response of Fractal Surfaces
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Reliability and Dielectric Breakdown
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Why is reliability predictable? 
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On random materials and biomimetic design

Life at the edge of  equilibrium thermodynamics uses 
geometry in remarkable ways … description of that
geometry is essential in understanding the function of 
biomimetic materials and devices
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