2009 NCN@Purdue-Intel Summer School Notes on Percolation and Reliability Theory

Lecture 10

Interface Damage and Negative Bias Temperature Instability

> Muhammad A. Alam Electrical and Computer Engineering Purdue University West Lafayette, IN USA

Outline of Lecture 10

- 1) Background information
- 2) NBTI interpreted by R-D model
- 3) The act of measurement and observed quantity
- 4) NBTI vs. Light-induced Degradation
- 5) Possibility of Degradation-free Transistors
- 6) Conclusions

Negative Bias Temperature Instability

Characteristics of NBTI Degradation

$$I_{D}(t) \propto \mu \times \left[V_{G} - V_{T}(t)\right] \qquad 10^{-1} \text{ Reisinger et al., IRPS '06} \\ V_{T}(t) = V_{T}(t = 0) + \Delta V_{T}(t) \\ \Delta V_{T} = A e^{-Ea/k_{B}T} t^{n} \\ \stackrel{\scriptstyle \leftarrow}{\leq} \\ 10^{-3} \\ \text{ is } \\ 10^{-3} \\$$

Outline of Lecture 10

1) Background information

- 2) NBTI interpreted by R-D model
- 3) The act of measurement and observed quantity
- 4) NBTI vs. Light-induced Degradation
- 5) Possibility of Degradation-free Transistors
- 6) Conclusions

Basics of NBTI Model

The Reaction-Diffusion Model

Interface traps with diffusion of atomic H

Si → H → H Si Si Si Si → H → H Si → H → H

X

ž

$$\left(\frac{k_F N_0}{k_R}\right) \approx N_H(0) N_{IT}$$
$$N_{IT}(t) = \int_0^{\sqrt{D_H t}} N_H(x, t) dx$$
$$\frac{1}{N_H(0)} \sqrt{D_H t}$$

$$= \frac{1}{2} N_H(0) \sqrt{D_H t}$$

Combining these two, we get

$$N_{IT}(t) = \sqrt{\frac{k_F N_0}{2k_R}} (D_H t)^{\frac{1}{4}}$$

Jeppson, JAP, 1977.

Poly

 $x(t) \sim \sqrt{D_H t}$

Interface traps with H₂ diffusion

$$\left(\frac{k_F N_0}{k_R}\right) \approx N_H(0) N_{IT}$$

$$N_{IT}(t) = \frac{1}{2} N_{H_2}(0) \sqrt{D_{H_2} t}$$

const. =
$$\frac{N_H(0)^2}{N_{H_2}(0)}$$
 (2 $H \rightleftharpoons H_2$)

Combining the three, we get

$$N_{IT}(t) \propto \sqrt{\frac{k_F N_0}{2k_R}} (D_{H_2} t)^{\frac{1}{6}}$$

$$\frac{10^{-1}}{10^{-2}}$$

$$\frac{10^{-1}}{10^{-2}}$$

$$\frac{10^{-1}}{10^{-2}}$$

$$\frac{10^{-1}}{10^{-2}}$$

$$\frac{10^{-1}}{10^{-2}}$$

$$\frac{10^{-2}}{10^{-3}}$$

$$\frac{10^{-2}}{10^{-5}}$$

$$\frac{10^{-2}}{10^{-2}}$$

$$\frac{10^{-2}}{10^{-2}}$$

$$\frac{10^{-2}}{10^{-1}}$$

$$\frac{10^{-2}}{10^{-1}}$$

$$\frac{10^{-2}}{10^{-1}}$$

$$\frac{10^{-2}}{10^{-1}}$$

$$\frac{10^{-2}}{10^{-1}}$$

Self-healing at AC stress

NBTI relaxation

$$N_{IT}^{(0)} = \frac{1}{2} N_H(0) \sqrt{D_H \tau_0}$$

$$N_{IT}^{(*)} \approx \frac{1}{2} N_H(0) \sqrt{\xi D_H t}$$

$$\frac{dN_{IT}}{dt} = k_F (N_0 - N_{IT}) - k_R N_H (0) N_{IT}$$

$$N_{H0} = N_{H0}^{(0)} - N_{H}^{(*)}$$
$$N_{IT} = N_{IT}^{(0)} - N_{IT}^{(*)}$$

$$N_{IT} = N_{IT}^{(0)} \left(1 - \sqrt{\frac{\xi t/\tau_0}{1 + t/\tau_0}} \right)$$

Frequency independent degradation

→ Both AC and DC NBTI degradation show same time characteristics.

Experiments show that frequency independence holds till at least 2 GHz

NBTI model for frequency independence

Smaller duty cycle reduces V_T shift ...

Outline of lecture 10

- 1) Background information
- 2) NBTI interpreted by R-D model
- 3) The act of measurement and observed quantity
- 4) NBTI vs. Light-induced Degradation
- 5) Possibility of Degradation-free Transistors
- 6) Conclusions

An enduring puzzle

Two different ways of measurement give two different results !

Measurement changes the NBTI degradation

What we think we do during measurement ...

What we **actually** do during measurement ...

* 5 sec. measurement window (for example). S. Rangan, Intel, IEDM 2003.

Measurement is like a variable frequency AC stress

More measurement & less (!) accuracy

Actually, n=0.16 at all times (H2 diffusion), measurement delay makes it appear n=0.25 at short times. A 40 year old puzzle finally resolved !

Outline of lecture 10

- 1) Background information
- 2) NBTI interpreted by R-D model
- 3) The act of measurement and observed quantity
- 4) NBTI vs. Light-induced Degradation
- 5) Possibility of Degradation-free Transistors
- 6) Conclusions

Non planar devices

Reliability theory anticipates performance-degradation trade-off.

Performance and reliability

Light-induced degradation in solar cells

Light induced degradation has a time exponent of n=1/3

Reaction-diffusion model for LID

LS Time [sec]

3-fold coordinated Surface atoms of a-Si. Green – H Red – surface Si White -- Bulk

Reaction:

$$\frac{dN_{DB}}{dt} = k_F N_0 G - k_R N_{DB} N_H \sim 0$$

Free H Generation:

$$\frac{dN_H}{dt} = \frac{dN_{DB}}{dt} - k_H N_H^2$$

$$N_{DB} \propto \left(3k_{H}\right)^{1/3} \left(\frac{k_{f}N_{0}G}{k_{r}}\right)^{2/3} t^{1/3}$$

Outline of lecture 10

- 1) Background information
- 2) NBTI interpreted by R-D model
- 3) The act of measurement and observed quantity
- 4) NBTI vs. Light-induced Degradation
- 5) Possibility of Degradation-free Transistors6) Conclusions

NBTI-aware logic and degradation-free transistors (A. E. Islam) $\Delta\mu_{\text{eff}}$ ΔĴ $I_{D} = A \mu_{eff} (V_{G} - V_{T})$ μ_{eff0} 10⁻¹ Reisinger *et al.*, IRPS '00 If we could make $\Delta \mu$ positive ... 10⁻² ${\rm AV}_{\rm T}[{\rm V}]$ **Conventional** $\Delta \mathbf{I}_{\mathsf{D},\mathsf{lin}}$ $T = 125 \ ^{0}C$ 10⁻³ 2.2 V 2.5 V 2.8 V **Degradation-free** 10^{-4} 10⁻⁵ 10⁻² 10⁴ 10¹ Time Time [sec]

Mobility and VT-shift

Before Stress

After Stress

$$\mathsf{E}_{\mathsf{eff}} = \mathsf{Q}_{\mathsf{dep}} + \eta \mathsf{Q}_{\mathsf{inv}} \sim (\mathsf{V}_{\mathsf{G}} - \mathsf{V}_{\mathsf{T}})$$

Degradation-free logic transistors ...

Implications for CNT-based TFT reliability

Hydrogen-free interfaces may have no interface traps ...

Outline of lecture 10

- 1) Background information
- 2) NBTI interpreted by R-D model
- 3) The act of measurement and observed quantity
- 4) NBTI vs. Light-induced Degradation
- 5) Possibility of Degradation-free Transistors6) Conclusions

The power of reaction-diffusion model

Prigogine, "From being to becoming", 1980.

Reaction-diffusion model produces complex structures out of homogenous systems

Power laws, fractals, SPICE models

A classical device may become fractal over a period of time ...

Conclusions

- NBTI has been one of the most important reliability challenge since the very inception of CMOS.
- The very strange properties of NBTI involving power-law time exponent, relaxation, frequency independence arise from the peculiar properties of reaction-diffusion models.
- Initially presumed different, NBTI in PMOS transistors and LID in a-Si solar cells appear to arise from the same physical phenomena.
- It is possible to design a degradation free transistors. Degradationfree does not mean defect-free devices.
- Finally, reaction-diffusion model appears to self-organize ordered surfaces. If this is also true for NBTI, the entire literature of NBTI spice model will have to be revisited.

epilogue

Disorder and Ohm's law

Line Edge Roughness **Dielectric BD** NC Flash Non-homo. T Random Dopants Source Drain NanoNet/ Biosensors Poly-Si high Performance medium Solar cells super-capacitors Plastic Logic' No large medium small Area $G \propto \frac{\tau}{m^*} \frac{1}{L}$ Does not mean what it used to ...

Theory and Application

Nonlinear Stick Percolation for Electronic Devices

 $I_D = f(V_D, V_G) \times \xi\left(\frac{L_C}{L_S}, D_C {L_S}^2\right)$

Width dependent On/Off ratio ...

Response of Fractal Surfaces

Reliability and Dielectric Breakdown

Why is reliability predictable?

distinction between $T_{BD}(0^+)$ vs. $T_{BD}(0^-)$

On random materials and biomimetic design

Life at the edge of equilibrium thermodynamics uses geometry in remarkable ways ... description of that geometry is essential in understanding the function of biomimetic materials and devices