2009 NCN@Purdue-Intel Summer School Notes on Percolation and Reliability Theory

Lecture 8 On the Mechanics of Defect Generation and Gate Dielectric Breakdown

Muhammad A. Alam
Electrical and Computer Engineering
Purdue University
West Lafayette, IN USA

outline of lecture 8

- 1) Theory of oxide breakdown
- 2) Statistics of Failure Distribution
- 3) Soft vs. Hard Breakdown
- 4) Correlated vs. Uncorrelated Breakdown
- 5) Conclusions

how to determine gate oxide reliability

Empirical projection is very difficult, if not impossible ...

breakdown in thick vs. thin oxides

theory of anode hole injection

Ballistic transport and hot contacts ... in 1980s!

AHI model: numerical calculation

AHI model verified

reduced defect generation at low voltage

.... but this is a statistical problem

 $1 \text{ CPU} \sim 10^8 - 10^9 \text{ Transistors}$

When one transistor fails, so does the IC

Statistics connects reliability and variability in a fundamental way ...

outline of lecture 8

- 1) Theory of oxide breakdown
- 2) Statistics of Failure Distribution
- 3) Soft vs. Hard Breakdown
- 4) Correlated vs. Uncorrelated Breakdown
- 5) Conclusions

mean failure time vs. failure time distribution

(simple) theory of statistical breakdown

$$P_0 = (1-p)^N = (1-Np/N)^N = \exp(-Np)$$

$$1 - F(p) = P_0 = \exp(-Np)$$

$$W \equiv \ln(-\ln(1-F)) = \beta \ln(t) - M\alpha \ln(t_0) + \ln(N)$$

Straight-line in a Weibull plot, slope proportional to thickness

bottom-up prediction for oxide scaling

Thin oxide breaks much faster than thick oxide due to percolation, process-improvement cannot solve this problem

lifetime projection ...

$$T_{BD}^{50\%}(A_{IC}) = (A_{TEST}/A_{IC})^{1/\beta} T_{BD}^{50\%}(A_{TEST})$$

$$T_{BD}^{q\%}(A_{IC}) = \left[\frac{\ln(1-q/100)}{\ln(1-0.5)}\right]^{1/b} T_{BD}^{50\%}(A_{IC})$$

$$oldsymbol{V_{safe}} = oldsymbol{V_{test}}$$
 - $oldsymbol{\log} \left\lceil rac{10 \ yrs}{oldsymbol{T_{BD}^{q\%}}}
ight
ceil / oldsymbol{\gamma_{v,acc}}$

HW: Derive this equations based on the last 5 slides

NMOS vs. PMOS reliability

PMOS less reliable than NMOS, contacts defines everything!

PMOS less reliable than NMOS below 2 nm

$$T_{BD} \sim 1/J_h$$
 with $J_h = J_e < \alpha T_h >$

NMOS

PMOS

For oxide < 2 nm:

 $J_h^{PMOS} > J_h^{NMOS}$, so $T_{BD}^{PMOS} < T_{BD}^{NMOS}$ Bude, IEDM98 Alam, IRPS00 Weir, ECS02

majority vs. minority ionization ... role of hot contacts

outline of lecture 8

- 1) Theory of oxide breakdown
- 2) Statistics of Failure Distribution
- 3) Soft vs. Hard Breakdown
- 4) Correlated vs. Uncorrelated Breakdown
- 5) Conclusions

soft breakdown for PMOS

physical reasons for improved reliability

Standard reliability reliability with soft breakdown

Many BD in IC before 2nd BD in the same transistor

statistics of soft breakdown

Prob. of a filled column: $p = q^{M}$

Prob. of filled cell: $q=(at^{\alpha}/NM)$

Prob. of exactly n-SBD

$$P_n = {}^{N}C_n [p^n] [(1-p)^{(N-n)}]$$
 $P_n = (\chi^n/n!) \exp(-\chi)$
with $\chi = (t/\eta)^{\beta}$ and $\beta = M\alpha$

Prob. of >= n SBD

$$F_n(\chi) = 1 - \sum_{k=0}^{n-1} P_k(\chi)$$

Measured data: $W_n = ln [-ln (1-F_n)]$

lifetime improvement

SBD improves lifetime geometrically ...

$$(T_n/T_1)^{\beta} = (n/e)(2\pi n)^{1/2n} /F_n^{(1-1/n)}$$

Alam, Nature, 2003

PMOS reliability with SBD

outline of lecture 8

- 1) Theory of oxide breakdown
- 2) Statistics of Failure Distribution
- 3) Soft vs. Hard Breakdown
- 4) Correlated vs. Uncorrelated Breakdown
- 5) Conclusions

partially correlated breakdown

Spatially and Temporally uncorrelated

Temporally correlated

soft BD improves dielectric lifetime

computing number of devices with n-SBD

$$\frac{dP_o}{d\chi} = -k_o P_o \qquad \chi = (t/\eta)^{\beta}$$

$$\frac{dP_n}{d\chi} = k_{n-1}P_{n-1} - k_nP_n$$

$$P_o = \exp(-\chi)$$

$$P_n = f(\xi) (\chi^n/n!) \exp(-\chi)$$

 $f(\xi) = \prod_{m=0}^{n-1} (1+m\xi)[1-\exp(-\xi\chi)]/\xi\chi]^n$

computing number of devices with n-SBD

correlated distributions for multiple SBD

By measuring first and second SBD distributions, we determine ξ ; which allows computation of all other distributions

current ratio technique

spatially uncorrelated breakdown

conclusions

- →The reliability of modern ultrathin oxides involve delicate interplay between reduced defect generation at low voltages, statistics of failure distribution, and uncorrelated generation of breakdown paths.
- ◆The reliability of ultra-thin gate dielectric is primarily dictated by 'hot' contacts hence the difference between PMOS and NMOS reliability. The uncorrelated breakdown.
- →The physics of statistical distribution of failure times and that of length scaling in very short channel transistors are the same, because they are based on similar physical principles.

reference

soft breakdown for PMOS

simple model for soft/hard breakdown

(a) t < TBD, only tunneling

(b) t = TBD, BD current initiates

(c) t > TBD, transient heating

If P(t) below certain threshold, breakdown will be soft

a simple model for SBD and HBD

statistical distribution of perc. resistance

soft breakdown at reduced voltage

Expt. Evidence of SBD @ low VG

Performance unaffected by SBD

G_p is known, how to determine **P**_{THER}?

$$P = G_pV^2$$

Gpcrit =
$$P_{THER}/V^2$$

Based on ratio of soft to hard- BDs at V_1 and V_2 , determine P_{THER} . Use it can determine Vsafe.

features of hard and soft breakdown

theory of correlated soft breakdown

physical reasons for improved reliability

computing number of devices with n-SBD

$$\frac{dP_o}{d\chi} = -k_o P_o \qquad \chi = (t/\eta)^{\beta}$$

$$\frac{dP_n}{d\chi} = k_{n-1}P_{n-1} - k_nP_n$$

$$P_o = \exp(-\chi)$$

$$P_n = f(\xi)$$
 $(\chi^n/n!) \exp(-\chi)$
 $f(\xi) = \prod_{m=0}^{n-1} (1+m\xi)[1-\exp(-\xi\chi)]/\xi\chi]^n$