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Process, Reliability, and Design
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Complexity of the Reliability Problem
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Equivalence between Spatial/Temporal Fluctuation
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plus
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top view (RDF) modelSide view (TDDB)

Spatial and temporal fluctuation should 
be considered with same framework …



Equivalence of Spatial/Temporal 
Fluctuations

Process Device Reliability
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Reliability: Stochastic Process Terminated 
by a Threshold

8

ln (time)

G
at

e 
Cu

rr
en

t

HBD
Pey, IRPS02



Reliability: Physics of how Things Break
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A child drops a glass

Bridges (Tacoma Narrows) 

Shuttle (Challenger)

Lighting in a rain-soaked night

Volcano, landslides & forest fire

Check-out queues, scheduling

A stochastic process terminated by threshold 



Theory of Accelerated Testing
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Nonlinear projection for
processes with threshold

Empirical projection is very difficult, if not impossible … 



Nonlinear Projection: an Illustrative Example 
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Stochastic Process

Stochastic Process with a threshold

Absorption site

How far away from the trap-site do I need to inject the 
particles so that after TBD sec of diffusion no more 
than y percent of particles is lost? 

v



Accelerated Testing: Empirical 
Approach
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Average Arrival Time Distribution
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Average Arrival Time Distribution
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Physical vs. Empirical Projection
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Empirical meas. &  comp. simulation would not do
Prediction is possible because t=0- is smooth  
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Front and Backend Reliability
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Transistor Reliability Issues

Gate Dielectric Breakdown
Negative Bias Temperature Instability
Hot Carrier Degradation
Radiation Induced damage

Interconnect Reliability Issues 

Electro-migration/Stress-migration.
Inter-level dielectric breakdown

The Oregonian, 2008
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Scaling and Reliability: A Short History
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PMOS NBTI 
dominates

NBTI reduces with NMOS 
transistors. HCI dominates 

due to high VDD

HCI reduces due to VDD
scaling, LDD structures

8088

TDDB increases due to TOX
scaling, NBTI re-emerge due 

to increased fields

HCI remerges as  an 
issue in spite of 

reduced VDD



SiO and SiH Bonds
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Broken Si-H bonds
Negative Bias Temperature Instability (NBTI)
Hot carrier degradation (HCI)

Broken Si-O bonds
Gate dielectric Breakdown (TDDB)
Electrostatic Discharge (ESD)
Radiation induced Gate Rupture (RBD)
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Crystalline, Amorphous, and Random Materials

21

Crystalline Amorphous Random

N(r)

r



Crystalline Si and SiO2

For a dynamic view of SiO2 see, 
http://cst-www.nrl.navy.mil/lattice/struk.jmol/coesite.html

crystalline Si amorphous SiO2

http://cst-www.nrl.navy.mil/lattice/struk.jmol/coesite.html�
http://cst-www.nrl.navy.mil/lattice/struk.jmol/coesite.html�
http://cst-www.nrl.navy.mil/lattice/struk.jmol/coesite.html�
http://cst-www.nrl.navy.mil/lattice/struk.jmol/coesite.html�


Crystalline vs. Amorphous SiO2
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Amorphous is neither completely  
random, nor it is defective
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Amorphous

small scatter in ring distribution …



Geometry defines ring statistics
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Geometry defines ring statistics
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Rings with Hard vs. Soft Bonds
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Ring Statistics in Random Structure
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Amorphous Material and Bandtail states
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Resolves the puzzle why glass is transparent ….  



Meaning of an oxide/nitride defect
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Crystalline vs. Amorphous Oxides
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‘Glass up Close’,
NY Times, July 29, 2008. 



Bulk defects of missing oxygen: 
E’, K, and P defects Courtesy: 

Prof. Lenahan

Responsible for gate dielectric breakdown 
Will discuss in lectures 8 and 9 



Pb centers – Interface Traps

[111]

Pb1
[211]

Of Pa, Pb, Pc -- only Pb survives
Related to NBTI degradation 
(Lecture 10)

[111] surface
Pb along [111] 

Stirling, PRL, 2000.

[100] surface
Pb0 along [111]

[100] surface
Pb1 along [211]



hν = geμBB0

Si
gn

al

B Field 

Electron Spin Resonance: 
a ‘microscope’ for defects

ΔE = geμBB0

Variable  B-field

10 GHz Microwave

Absorption Spectra

Absorbance

First Derivative

B Field

ms=-0.5

B0 = 0

En
er

gy

ms =+0.5

B-value suggests 
local environment



ESR Invisible Defects

Paramagnetic materials may appear diamagnetic
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Conclusions

Reliability is a very important technology problem. The 
success or failure of any technology depends on its intrinsic 
reliability (e.g. Stone vs. Cu age) 

Historically reliability has been an empirical science; it has 
changed dramatically since WWII  (Military applications, AT&T 
trans-Atlantic cable, IBM mainframe, Introduction of CMOS). 

Reliability as a ‘Stochastic process with a threshold’ provides 
the physical basis for wide range of phenomena. 

There are many reliability concerns for electronic devices –
an analysis of these problems beings with the analysis of the 
nature of defects. We will related bulk oxide E’ centers to 
TDDB and depassivation of SiH bonds at the interface to NBTI. 



Ring Statistics in Random Structure
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