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outline of  lecture 5

1) Background: A different type of transport problem

2) Example: Classical biosensors

3) Fractal dimension and cantor transform

4) Example: fractal nanobiosensors

4) Conclusions

5) Appendix: Transparent Electrodes and Antenna 
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2D transport
in 2D Network

Nanobiosensors
Fractal 
electrodes

3D transport
towards 2D network

lectures 4, 5 and 6

Excitonic solar cell

3D transport
in 3D network
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Basics of Nanobiosensing



Zoo of biosensors!

ChemFET/IsFET (~mM)

Si-NW/CNT (nM-aM)
Nano-Net (nM-pM)

 

Nanodots

Nano Cantilever (~pM)

Array sensors (~pM)



Micro-Molar, nano Molar, pico Molar ?!

1M = 6x1023 molecules/liter  ~ 1x1015/(100 um)3 box 

1 fM ~ 1 1 pM ~ 1000 1 uM ~ 1 billion 

Like a proton in H atom



sensitivity @given settling Time

aM        fM         pM          nM        µM          mM       M

Historically …

ChemFET/IsFET

Recently …

Si-NW/CNT Nano-NetNanodots

Related to the shape of the sensor?

How can I think about the shape-related response? 
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Incubation time for a biosensors
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presumption of fast capture

If the capture velocity is very large, 
then ρs=0 for finite capture rates. 
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Diffusion Capacitance
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Cumulative Capture
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diffusion and capture in steady-state

… but I am not interested in steady-state response ! 
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t1< t2 < t3

x

diffusion distance2d D
dt

= ∇
ρ ρ

~x Dt
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Time dependent capture
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Bishop et. al., Nanotechnology, 2006.
Nair et. al,  APL, 88, 233120, 2006 

pretty good approximation ..

Geometry matters,  but the result is not very intuitive … 
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… simplified diffusion-capture model
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Exact Equations … Simplified Equations …



1717

ρ0

0

0

( ) ~

~

N t A R A

Dt A

× × ×

× ×

ρ

ρ

DF=2

2

0
2

1~ s
s

Nt
D ρ m

planar sensor (DF=2)

~ 2R Dt



1818

0

0

2

2

( ) ~2

~

N t a R

Dt

× ×

 ×  

ρ

ρ

π π

π0

1~ s
s

N at
D ρ m

DF=1

cylindrical NW sensor (DF=1)

~ 4R Dt



1919

100sNW
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geometry of diffusion/sensor response

?
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classification of surfaces…
Fractal Dimension (DF)- Box counting technique
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Fractal Dimension of Composites
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fractal dimension of a stick network

Dimension depends on stick density …
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For DF,stick=1.5

Let m=2,  solve for n: 
log(n)=log(2)/(DF,stick-1)  
Result: n=4

DF,CT= DF,stick

2D to 2D Cantor transform

Generation algorithm:

Take a line segment
Remove the fraction (n-2)/n  

from its centre  (result: ½) 
repeat …

DF,CT=1+log(m)/log(n)
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D2D= 2 DF,CT     = 1+ 2log(m)/log(n)

DF=2=DF,CT if m=2 and n=4

2D to 3D Cantor transform
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Surfaces with same DF have same time response!

practice run: 2D surface in two different ways 
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ready to solve the real problem ?
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analogous to Fourier transform …
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Dimensionally frustrated diffusion!
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Nair/Alam,  PRL, (2007). 

diffusion towards fractal surfaces
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geometry of diffusion & sensor response

aM         fM         pM          nM        µM          mM       M

Historically …

ChemFET/IsFET

In the future ..

Nanodots

Recently …

Si-NW/CNT

Composites more sensitive than planar, but less than NW
(A. Star, PNAS,103, 4,921, 2006)

0 ~DM
s Dt kρ
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One special class of percolation problem involves diffusion 
towards fractal surfaces (e.g. biosensors, fractal electrodes, 
fractal antenna, solar cells and super-capacitors, etc.)

Cantor transform of the irregular surfaces into regular ones 
allows simple yet accurate calculation of their time-responses 
both in 2D and 3D systems. 

We found that it is the geometry of diffusion, rather than 
geometry of electrostatics that defines sensor response.

The fractal antenna utilizes its self-similarity to broaden its 
reception and transmission bands. 

conclusions
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