2009 NCN@Purdue-Intel Summer School Notes on Percolation and Reliability Theory

Lecture 5 2D nets in 3D world: Fractal Biosensors

Muhammad A. Alam
Electrical and Computer Engineering
Purdue University
West Lafayette, IN USA

outline of lecture 5

- 1) Background: A different type of transport problem
- 2) Example: Classical biosensors
- 3) Fractal dimension and cantor transform
- 4) Example: fractal nanobiosensors
- 4) Conclusions
- 5) Appendix: Transparent Electrodes and Antenna

lectures 4, 5 and 6

2D transport 3D transport towards 2D network in 2D Network Fractal Nanobiosensors electrodes

3D transport in 3D network

Excitonic solar cell

Basics of Nanobiosensing

Surface Plasmon Resonance

Zoo of biosensors!

Si-NW/CNT (nM-aM)

Nano Cantilever (~pM)

Array sensors (~pM)

ChemFET/IsFET (~mM)

Micro-Molar, nano Molar, pico Molar?!

 $1M = 6 \times 10^{23} \text{ molecules/liter } \sim 1 \times 10^{15} / (100 \text{ um})^3 \text{ box}$

Like a proton in H atom

sensitivity @given settling Time

Related to the shape of the sensor?

How can I think about the shape-related response?

outline of lecture 5

- 1) Background: A different type of transport problem
- 2) Example: Classical biosensors
- 3) Fractal dimension and cantor transform
- 4) Example: fractal nanobiosensors
- 4) Conclusions
- 5) Appendix: Transparent Electrodes and Antenna

Incubation time for a biosensors

$$D_F = 1$$

$$1 < D_F < 2$$

$$N(t) = \rho_0 t_s^{g(D_F)}$$

presumption of fast capture

$$\frac{dN}{dt} = k_F (N_0 - N) \rho_s$$

$$\approx k_F N_0 \times \rho_s = \nu_s \rho_s$$

If the capture velocity is very large, then ρ_s =0 for finite capture rates.

steady state: analogy to electrostatics

$$D\nabla^{2}n = 0 \qquad C_{0} = \frac{D}{W} \text{ (Planar)}$$

$$I = C_{0} (\rho_{0} - \rho_{s}) \qquad = \frac{2\pi D}{\log(W + a_{0}/a_{0})} \text{ (NW)}$$

$$= \frac{4\pi D}{a_{0}^{-1} - (W + a_{0})^{-1}} \text{ (ND)}$$

$$C_0 = \frac{\mathcal{E}}{W} \quad \text{(Planar)}$$

$$= \frac{2\pi \mathcal{E}}{\log(W + a_0/a_0)} \quad \text{(Cylinder)}$$

$$Q = C_0 \left(\phi_0 - \phi_s\right)$$

$$= \frac{4\pi \mathcal{E}}{a_0^{-1} - \left(W + a_0\right)^{-1}} \quad \text{(Sphere)}$$

diffusion and capture in steady-state

$$I = C_0 (\rho_o - \rho_s)$$

$$I = A \frac{dN}{dt} = Ak_F N_0 \rho_s$$

$$N(t) = \rho_0 t \left[\frac{A}{C_0} + \frac{1}{k_F N_0} \right]^{-1}$$

$$= \frac{2\pi D}{\log(W + a_0/a_0)}$$

... but I am not interested in steady-state response!

$$\frac{d\rho}{dt} = D\nabla^2 \rho$$

diffusion distance

time-dependent capture dynamics

$$N(t) = \rho_2 t \left[\frac{A}{C_t} + \frac{1}{k_F N_0} \right]^{-1}$$

$$C_{0} = \frac{D}{W}$$

$$= \frac{2\pi D}{\log(W + a_{0}/a_{0})}$$

$$= \frac{4\pi D}{a_{0}^{-1} - (W + a_{0})^{-1}}$$

$$C_{t} = \frac{D}{\sqrt{2Dt}}$$

$$= \frac{2\pi D}{\log(\sqrt{4Dt} + a_{0}/a_{0})}$$

$$= \frac{4\pi D}{a_{0}^{-1} - (\sqrt{6Dt} + a_{0})^{-1}}$$

pretty good approximation ...

Nair et. al, APL, 88, 233120, 2006 Bishop et. al., Nanotechnology, 2006.

Geometry matters, but the result is not very intuitive ...

... simplified diffusion-capture model

Exact Equations ...

$$\frac{dN}{dt} = k_F (N_0 - N) \rho_s - k_R N \qquad \rho_s \approx 0$$

$$\frac{d\rho}{dt} = D\nabla^2 \rho$$

Simplified Equations ...

$$\rho_{s} \approx 0$$

$$l_D \sim \sqrt{Dt}$$

planar sensor (DF=2)

cylindrical NW sensor (DF=1)

geometry of diffusion/sensor response

outline of lecture 5

- 1) Background: A different type of transport problem
- 2) Example: Classical biosensors
- 3) Fractal dimension and Cantor transform
- 4) Example: fractal nanobiosensors
- 4) Conclusions
- 5) Appendix: Transparent Electrodes and Antenna

classification of surfaces...

Fractal Dimension (D_F)- Box counting technique

 $N(h) \sim h^1$

$$N(h) \sim h^0$$

dimension of quasi-2D cantor stripes

$$D_{F,2} = \frac{\log(N)}{\log(1/h)} = \frac{\log(3^n) + \log(2^n)}{\log(3^n)} = 1 + \frac{\log(2)}{\log(3)} = 1 + DF_x$$

In general,
$$D_{F,3} = DF_x + DF_y + DF_z$$

fractal dimension of a stick network

Dimension depends on stick density ...

2D to 2D Cantor transform

$$D_{F,CT}=1+\log(m)/\log(n)$$

Let m=2, solve for n:

$$log(n) = log(2)/(D_{F,stick}-1)$$

Result: n=4

$$D_{F,CT} = D_{F,stick}$$

Generation algorithm:

Take a line segment

Remove the fraction (n-2)/n

from its centre (result: $\frac{1}{2}$)

repeat ...

2D to 3D Cantor transform

$$D_{F,CT} = 1 + 2\log(m)/\log(n)$$

$$D_F=2=D_{F,CT}$$
 if m=2 and n=4

practice run: 2D surface in two different ways

Surfaces with same D_F have same time response!

outline of lecture 5

- 1) Background: A different type of transport problem
- 2) Example: Classical biosensors
- 3) Fractal dimension and cantor transform
- 4) Example: fractal nanobiosensors
- 4) Conclusions
- 5) Appendix: Transparent Electrodes and Antenna

time-dependent DF: from 1D to 2D

$$N(t) = C_{D(t)} \rho_0 t$$

$$C_{D(t)} = \frac{2\pi D}{\log\left[\sinh\left(2\pi\sqrt{Dt}P\right)/\pi a_0P\right]}$$

DF of the response of an object can morph with time ...

ready to solve the real problem?

Reaction flux Diffusion flux

analogous to Fourier transform ...

diffusion towards fractal surfaces

Dimensionally frustrated diffusion!

$$N(t) = \rho_0 t_s^{1/D_F}$$

$$1 < D_F < 2$$

$$s^* \text{ small}$$

geometry of diffusion/sensor response

geometry of diffusion & sensor response

Composites more sensitive than planar, but less than NW (A. Star, PNAS, 103, 4,921, 2006)

conclusions

- ◆ One special class of percolation problem involves diffusion towards fractal surfaces (e.g. biosensors, fractal electrodes, fractal antenna, solar cells and super-capacitors, etc.)
- ◆ Cantor transform of the irregular surfaces into regular ones allows simple yet accurate calculation of their time-responses both in 2D and 3D systems.
- → We found that it is the geometry of diffusion, rather than geometry of electrostatics that defines sensor response.
- → The fractal antenna utilizes its self-similarity to broaden its reception and transmission bands.