

Introduction of Nano Science and Tech

Interface and Self Assembly

Nick Fang

Course Website: nanoHUB.org

Compass.illinois.edu

Proposal (Oct 12-16)

Please send me your intended topic by tomorrow

 Based of similarity of topics you may be asked to work/present as group

A tentative schedule will be posted on Friday

Origin of Adhesion: VdW Forces

- Van de Waals force: the long range interactions between molecules
- Recall the potential energy: $\phi = -\frac{\alpha}{r^6} + \frac{\beta}{p^n} / (n \approx 12)$

Let's find the interaction between one molecule and a surface

At distance x in the wall, consider a circle of radius r:

$$y = \sqrt{(D+x)^2 + r^2}$$

Number density of molecules in wall

$$\Phi(D) = \int_{0}^{\infty} \int_{0}^{\infty} \phi(y) 2\pi r dr dx$$

$$\Phi(D) = -\frac{\pi \rho \alpha}{6D^3}$$

Example: Sphere to Flat Surface

Consider a thin sheet at location z on the sphere:

(lb)

Radius
$$x = \sqrt{(2R - z)z}$$

number of molecules on this sheet:

$$\rho_2 \pi x^2 dz = \rho_2 \pi (2R - z) z dz$$

Potential energy per molecule: $\Phi(D+z) = -\frac{\pi \rho_1 \alpha}{6(D+z)^3}$

Integrated over whole sphere:

$$\Phi_{total} = -\rho_1 \rho_2 \pi^2 \alpha \int_{0}^{2R} \frac{(2R - z)z}{6(D + z)^3} dz$$

When D<<R, 2R-z ~2R

$$\Phi_{total}(D) \approx -\frac{\rho_1 \rho_2 \alpha \pi^2 R}{6D} - \text{Distance of contact}$$

Adhesion Enhancement by Nano-toes

http://shasta.mpi-stuttgart.mpg.de/research/Bio-tribology.htm

$$\Phi_{total}(D) \approx -\frac{\rho_1 \rho_2 \alpha \pi^2 R}{6D}$$

How Can a Gecko Lift Its Foot Off?

"These lizards uncurl their toes like a paper party favor whistle when putting their feet down;

- and peel the toes back up as if removing a piece of tape when they step away."

Chemical & Engineering News, 2000

K. Autumn et al, Nature 405, 681-685(2000)

Microscopic View of Friction

$$F \approx \frac{A}{D} (\gamma_A - \gamma_R)$$

Surface energy in Advancing contact

Surface energy in Receding contact

Derjaguin (1957) proposed correction of friction

$$F \approx \mu W + \underline{\mu A p_0}$$

Due to adhesion energy (no external force needed)

From Surface Forces to Self Assembly

From Bush, J. W. M., and D. L. Hu. "WALKING ON WATER: Biolocomotion at the Interface." Annu. Rev. Fluid Mech. 2006. 38:339–69

"By releasing a surfactant, water striders and other insects was able to propel itself toward and up the meniscus"

Outline

- Self Assembly
 - Thermodynamics of Micelle self assembly
 - Micro/Meso/Macroscale Self Assembly
 - Limitations

Driving Forces for Self-Assembly

- Molecular Bonding Forces
- Steric Energy
- Capillary Forces
- ElectrostaticForces
- Magnetic Forces

Assembly by Surface Energy

Vesicles of bilayer membranes

Surfactant molecule: amphiphilic

Phase Diagram of Micelles

Situation A

Situation B

ME 498

Micelle Properties

1. Hydrophobic effect

2. Head repulsion

Electrostatic or Steric

3. Packing efficacy (geometric factor)

$$Ns = V$$
 $a_0 l$

$$Ns = 0.33$$

$$Ns = 0.5$$

$$Ns = 1.0$$

Molecular Self Assembly Geometries

Surfactant molecular shape/interactions mainly determines aggregate geometry.

Critical packing factor = v/a_ol_c (unitless), where:

v = molecular volume of surfactant chain

a_o = area per surfactant head

l_c = length of surfactant chain

Lipid	Critical packing parameter v/a ₀ / _c	Critical packing shape	Structures formed
Single-chained lipids (surfactants) with large head-group areas: SDS in low salt	< 1/3	Cone a_0	Spherical micelles
Single-chained lipids with small head-group areas: SDS and CTAB in high salt, nonionic lipids	1/3-1/2	Truncated cone	Cylindrical micelles Cook Cook Cook Cook Cook Cook Cook Coo
Double-chained lipids with large head-group areas, fluid chains: Phosphatidyl choline (lecithin), phosphatidyl serine, phosphatidyl glycerol, phosphatidyl inositol, phosphatidyl inositol, sphingomyelin, DGDG*, dihexadecyl phosphate, dialkyl dimethyl ammonium salts	1/2-1	Truncated cone	Flexible bilayers, vesicles
Double-chained lipids with small head-group areas, anionic lipids in high salt, saturated frozen chains: phosphatidyl ethanolamine, phosphatidyl serine + Ca ²⁺	~1	Cylinder	Planar bilayers

From Israelachvili, Chap 16

Critical Size of Self Assembled Micelles

From Israelachvili, Chap 17

Possible Phase Transformation of SAMs

From Israelachvili, Chap 16

Thermodynamic Balance of SAM

Fig. 16.3. Association of N monomers into an aggregate (e.g., a micelle). The mean lifetime of an amphiphilic molecule in a small micelle is very short, typically $10^{-5}-10^{-3}$ s.

From Israelachvili, Chap 16

Critical Micelle Concentration (CMC)

From Israelachvili, Chap 16

Total concentration C

Size Distribution of SAMs

Size deviation scales as square root of number (M) of monomers required to form the micelle

More Complex Shapes

 Need to consider the curvature elasticity of membranes/microphases

B

Self Assembly Driven by Capillary Forces

The height of the meniscus is given by Laplace Equation:

$$\frac{\partial^2 h}{\partial x^2} = \frac{1}{\gamma} (\Delta \rho g h - \Delta P_0)$$

Solution of the above gives the surface profile due to capillary force and gravity:

$$h(x) = t \left[\frac{2}{1 - e^{(d/x_c)}} + \frac{e^{(-x/x_c)} + e^{(x/x_c)}}{e^{(d/2x_c)} - e^{(-d/2x_c)}} \right]$$

self-assembly are favorable for objects with t as small as 100 nm

WHITESIDES et al, Science 1997

Additional Readings

- Jacob N. Israelachvili, "Intermolecular and Surface Forces", Chapter 16, 17, Academic Press, 2nd Edition, 1992
- MRS Bulletin, Focused Issue on "Self Assembly in Materials Synthesis", 2005
- Whitesides Group Website: http://gmwgroup.harvard.edu/research.html