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Surfaces and Interface Effects

Nick Fang

Course Website: nanoHUB.org
Compass.illinois.edu

Introduction of Nano Science and Tech
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About Final Project

• You are asked to create an entry of 
nanotechnology topic on Wikipedia

• Recommended Contents:
– Background and History

– Basic Principles

– Size effect

– Materials, Applications

– Recent advancements

– Links
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Wikipedia Example
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Proposal Presentation

• Date: Oct 12-Oct 16

• Every one is given 15 minutes for your 
presentation:
– What’s your topic?

– Why it is interesting?

– What’s the nanoscience principle?

– Who are the heros in this area?

– What would be the potential applications?
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Organization of Coming Lectures

• Coupled Charge-Mass Transport in Fluid
– Electrokinetic Phenomena

• Surface and Interface Interactions
– Contact Angle, Effect on Melting and 

Condensation, Wetting on surface textures

• Friction, Lubrication and Adhesion
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Conduction of Ions in Fluids

From: Jens Ducrée,  
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http://www.myfluidix.com/
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Applications of Ion Migration

Gel Electrophoresis:

- Separation of larger 
molecules with smaller 
ones by their mobility in 
gels

- Competing with diffusion 
so low diffusivity preferred

- For 15-20 cm long gel, 
the separation time is 
about hours

http://www.cbs.dtu.dk/staff/dave/roanoke/genetics980211.html
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Electric Double Layer
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Poisson Equation due to 
space charges

Presence of space charges 
due to thermal excitation:
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Debye Length

• A rough measure of the 
characteristic length for 
potential decay

• Calculated with the 
ionic strength of the 
bulk fluid 
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E.G.  1M HCl @300K:
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1nM HCl@300K: 

D = 435 m
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Electro-Osmotic Effect

• In the diffuse layer, 
there is a net charge 
that moves according to 
external field

• Electric field induced 
ion flow also moves the 
fluid, following a flat 
velocity profile (plug 
flow)
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Electro-Osmotic Flow

www.kirbyresearch.com/.../etc/te
xtbook/mae28.jpg 

Plug-flow profile:

Very important for mixing 
and pumping in 
microdevices

•http://www.myfluidix.com/From: Jens Ducrée,  
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Dielectrophoresis, etc

• Particles become polarized 
under electric field

• When E field is not uniform, 
there is a net force on particle

2( ) ( )F V E  

Frequency 
dependent 
polarizability

Particle 
volume

E field 
gradient

•http://www.myfluidix.com/From: Jens Ducrée,  
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Surface and Surface Tension

• Surface tension: a 
thermodynamic 
property

• dG=dA, dF=dl 
• Unit : J/m2 or N/m

Surface tension is generally 
restricted to liquid; Surface free 
energy generally applies to liquids 
and solids
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Molecular Picture of Surface Tension

From: Jens Ducrée,  http://www.myfluidix.com/
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SV

SL




• Young’s equation to relate the surface forces at the 
three-phase contact line to the apparent contact angle 
for an ideal surface.

where

Contact Angle: Young’s Equation
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How to Make Droplet Run Uphill
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Electro- wetting
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Effect of Surface Energy: 
Nucleation/Melting
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the nuclei (it takes energy to make 
an interface)
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r* = critical nucleus: nuclei < r* shrink;  nuclei>r* grow (to reduce energy) 
Adapted from Fig.10.2(b), Callister 7e.

Surface Effect & Homogeneous Nucleation 

GT = Total Free Energy
= GS + GV

Surface Free Energy-

 24 rGS
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Homogeneous Nucleation (Cont’)

Find critical radius for maximum free energy change
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And the energy barrier that a 
nucleation process must 
overcome
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Solidification/Melting
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Note: HS = strong function of T

 = weak function of T

 r*    decreases as T increases

For typical T r* ca. 100Å

HS = latent heat of solidification

Tm = melting temperature

= surface free energy

T = Tm - T = supercooling

r* = critical radius

Bulk gold melts at 1,064°C. 

3nm gold nanoparticles
melts at 300°C!
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Size Effect in Evaporation/ Condensation

Kelvin Equation

Kelvin Equation: The change in 
vapor pressure due to a 
meniscus with radius r (e.g. in 
a capillary or over a droplet)
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• The surface tension of water 
is γ = 74mN/m at T = 293 K 
which gives the parameter 
γ/nkT = 0.54 nm.

• Therefore we obtain for a 
Kelvin radius of 100 nm 
(concave), Pv/P0 = 0.9.

Pv<P0: condense; 
Pv>P0: evaporate



ME 498 © 2006-09 Nick Fang, University of Illinois.  All rights reserved. 23

• Nature has provided some water repelling 
examples from which we can learn.
– Bird feathers

– Lotus leaves

– Water walking insects such as water striders 
and some types of spiders

http://chemistry.org/ http://www.treehugger.com/files/lotus-leaf.jpg

http://www-math.mit.edu/~dhu/Striderweb/striderweb.html

Wetting on Textured Surfaces
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Wetting on Textures: Wenzel Model

• Wenzel [2] showed that the apparent contact angle 
for homogeneous systems with surface roughness is 
modified in the following way:

 coscos rW 

Marmur, Wetting on hydrophobic rough surfaces: 
To be heterogeneous or not to be [3]

surfacesmooth afor anglesYoung'

areasurfacegeometric

areasurfaceactual
roughnesssurface

drop Wenzelafor anglecontact Apparent 











r

W

Illustration of a drop in the Wenzel state 
on a rough surface; note homogeneous 
contact area
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Inhomogeneous Wetting

• Cassie and Baxter [4] developed the following 
relation, sometimes referred to as Cassie’s Law, to 
predict the apparent contact angle for heterogeneous 
systems based on wetted fractional areas 
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Marmur, Wetting on hydrophobic rough surfaces: 
To be heterogeneous or not to be [3]

Illustration of a drop in the Cassie state 
on a rough surface; note heterogeneous 
contact area
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Cassie and Wenzel States

• Here are a pair of excellent micrographs from 
Patankar showing actual droplets in the Cassie state 
(a) and the Wenzel state (b) 

• Note, however, that they are sitting on exactly the 
same surface, indicating transitions are possible 

a b
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Sticky or Slippery Surfaces?

When droplet is comparable to 
the roughness and the original 
surface is wetting, it may not 
move even apparent contact 
angle is large
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Additional Readings

• Jacob N. Israelachvili, Intermolecular and 
Surface Forces, Chapt 11, Academic Press, 
2nd Edition, 1992 

• Jens Ducrée, online resources for micro- and 
nanofluidic technologies,Chap. 2.7 & 3.7  
http://www.myfluidix.com/


