
ME 498 © 2006-09 Nick Fang, University of Illinois.  All rights reserved. 1

Thermal and Electric Conduction  
in Nanostructures

Nick Fang

Course Website: nanoHUB.org
Compass.illinois.edu

Introduction of Nano Science and Tech
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First Midterm

• Friday, Sept 25 1-2PM

• Coverage: 
– Scaling

– Quantum Effects

– Molecular Dynamics of Transport

– Nanoscale Solid Mechanics

• A Review Lecture on Monday, Sept 21
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Quantum Fracture Mechanics

Applying Griffith’s approach to 
atomic lattices, e.g. graphenes:

a

V

U
T

U
E



a
crit

aa
U






  U

a a

 


 

From N. Pugno and R. S. Ruoff, Quantized fracture mechanics, Philosophical 
Magazine 84 (2004), 2829-2845 
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“Quantized” Critical Strength!

From N. Pugno and R. S. Ruoff, Quantized fracture mechanics, 
Philosophical Magazine 84 (2004), 2829-2845 
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Mechanical coupling at Nanoscale

• E.G. Piezo-
electricity (i.e. 
electric potential 
in response to 
applied stress)

S = strain (relative length change ΔL/L, dimensionless) 
L0= ceramic length [m]
E = electric field strength [V/m]
dij= piezoelectric coefficient of the material [m/V] See: www.physikinstrument.com
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Magneto-restrictive Effect

Magnetostriction is the 
strain of a material in 
response to change of 
magnetization. 

“giant” magnetorestriction
found in nanostructured
materials

Application: Flat panel speakers (e.g. 
sound bugs) http://www.feonic.com/#commInfo
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Shape Memory Effect
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Mechanical Nanoresonators

Putting Mechanics into
Quantum Mechanics, 
Keith C. Schwab and 
Michael L. Roukes, 
Physics Today, 2005, 
36-42)
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Thermal Noise in Resonators
Cantilever total energy:

Each are subject to thermal 
noise 1/2kT

From We get
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Back to Constitutive Equations

• Hooke’s Law

• Fourier’s Law

• Fick’s Law of Diffusion

• Newton’s law on shear stress

• Ohm’s Law
How are they 
correlated in the 
nanoscale?

J= 

= 

q = -k

J = -DC

 = -du/dy)
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Look Into the Conducting Nanowires

A Cloud of moving carriers

- Some are slow

- Some are fast

- Some move against the 
mainstream

Momentum k

Number of particles 
with momentum k

V
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Calculating Current Density

Current = # electrons through A 
per second

( , ) /I e n r k Adr dt  

Current density:

( , ) ( , )J e n r k v r k  

Average 
velocity

Average 
number of 
electrons

( , ) ( , ) ( , )Q E r k n r k v r k  
Power density:
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Net Charge/Energy Flux

( , ) ( , )
k

J e n r k v r k dk  

In order to find the net charge/energy flux (net 
current/power density), we need to consider all 
possible states at thermal equilibrium

Note: ( , ) ( , ) ( , )n r k dk DOS r k p r k dk

Density of 
States

Boltzmann 
Distributions

( , ) ( , ) ( , )
k

Q E r k n r k v r k dk  
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Recall: For Quantum Particles

• Electrons: only two states 
possible (conduction, valence)

• Photons and Phonons: all 
possible states of energy
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Time Evolution in f(r, k)

We Learned from fluidic mechanics:
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(Corrected for particle motion)

Since k is also changing over time, we add:
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(Since total number of 
states is unchanged 
over time)

“Convection” “Acceleration”“Reaction”
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Boltzmann Transport Equation

r k
F

p v p p
t


    



r
r

h
“Convection” “Acceleration”

So how to estimate reaction?

Locally, the system that is away from thermal 
equilibrium has a tendency to relax toward equilibrium 
state:

0p p
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 Equilibrium 

Distribution
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Steady State Boltzmann TE

0
r k

p p F
v p p




   
r

r
h

In order to write p(r, k) explicitly, we further assume

0 ( , )p p p r k  0( , )p r k p 
Further, we learned the trick from DOS:
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Current Density and Mobility

( , ) ( , )
k

J e n r k v r k dk  
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Assume F along z direction, we find:

( )B e e
z

k Tn en
J e F

z m m

 
 


Electron diffusion Migration under 
external field


