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@ First Midterm

* Friday, Sept 25 1-2PM
« Coverage:

— Scaling

— Quantum Effects

— Molecular Dynamics of Transport
— Nanoscale Solid Mechanics

* A Review Lecture on Monday, Sept 21
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 Why?
— Promising material
behaviors (reduced

defects and faster
recovery)

E.G. artists’ view of space
elevators using CNTs

— Coupling and quantum
effect on mechanical
response (this lecture)

(E.G. mechanical
thermometer)

Cleland and Roukes, Nature, 1998
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Energy 1

« Look back at the potential "
function for two atoms.

 Derivative is related to
strength.

* Approximate strength curve
with a sinusoid:

O =0,SIN%

— o, = theoretical cohesive
strength

dg
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N4

* Theory states:

OR

« Way too high for common materials (100-1000x too high)

 Look at “whiskers”

— Small, “defect-free” fibers

— Agreement is a little better.

O'f E
Material GPa (psi X 10%) GPa (psi X 10% Elo,
Silica fibers 24.1 (3.5) 97.1 (14.1) 4
Iron whisker 13.1 (1.91) 295.2 (42.9) 23
Silicon whisker 6.47 (0.94) 165.7 (24.1) 26
Alumina whisker 15.2 (2.21) 496.2 (72.2) 33
Ausformed steel 3.14 (0.46) 200.1 (29.1) 64
Piano wire 2.75 (0.40) 200.1 (29.1) 73

From: Hertzberg, p.76.
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Defects In Solids

To this point we have assumed perfect order in
crystals

Defects always exist in real materials
Sometimes we add “defects” - alloying

Classifications of defects

Usually referring to geometry or dimension of defect
Point : 1-2 atomic positions (10-1° m)- e.g. vacancies,
interstitials

Line: 1-Dimensional (10° to 10> m)- e.g. dislocations
Interfacial: 2-Dimensional (108 — 102 m) - e.g. grain
boundaries

Volume: 3-Dimensional (104 - 102 m) - e.g. pores,
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@ Bulk Dislocation Movement

Shear must act in direction of Burgers vector b

Edge
— Positive & negative

Screw
— Right-hand & left-hand

Analogies for motion
— Caterpillar crawling
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From: Callister, p.156
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Stress Fields

\
/

™
L]
™
w1/
s
WL
Fdl
RN
™y ]
y

ARNT AR SA "‘..J—.f"' Ty f"\[L\/ Ty I TE”S'O”
\‘A..J LN RN AN PN PN RN Y 'khJ/ J

Pl Il Nl I WO Il I

&J (NERNFALN VALY VAN PN k7

T T . T Tl T R

QJ‘I W LSOALS AL AL ALY

PO F
—l |

Adapted from Fig. 7.4,
Callister 7e.

Extra half plane of atoms
cause lattice distortions

Result in tensile,
compressive, and shear
strains in neighboring atoms

— Magnitude decreases with
distance

— Pure compression and tension
directly above and below slip
line

— Over most of the effected
region combination of stresses

Screw dislocation

— Pure shear
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@ Microscopic View of Strain-Stress &

c (MPa)

& (%)
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Results from crack propagation
 Giriffith Crack

Oy = 2Go E :@o
L

a stress concentration factor

HEe—

Y where
p; = radius of curvature

c, = applied stress
G, = stress at crack tip

J For a crack, typically have
(a a=103m
% — *
p=10°m Ojpey = 2000 Gapplied
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Griffith Approach

2T thickness, t

] e Gapplied
a
crit 2 a
Minimum criterion for stable Jlo r2a‘t| = — (7/S 4 at)
crack growth: oa\ 2E oa
Strain ener oes into surface
energy o9 2 E 7/5
J —
T a
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@ So When Does Crack Propagate? e

Crack propagates rapidly if above critical

stress EG 1/2
.e., o,>0 — C
m C GC —
7cd
O NTA= EG = constant!
where ‘ ¢
— E = modulus of elasticity
— Gc = specific energy release rate Measurable (fixed)

materials properties

— a=one half length of internal crack
Fracture Toughness, K.

Brittle: G¢ =2y, Ductile:  G¢ = 2(7/5 +7/p)
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Applying Griffith’'s approach to
atomic lattices, e.g. graphenes:
1 oU orI AU AT
_ _ — <

v A da oa Aa  Aa

U
f [ E
. [ 1+ p/2a 1 4+ p/la ] >\
o(l,p) = ﬁ;r\/ ploa _ ac ol a

m(/ + nﬁ}_ {\( 1 4+ 2//a crit

From N. Pugno and R. S. Ruoff, Quantized fracture mechanics, Philosophical
Mlza@%zine 84 (2004), 2829_%&(509 Nick Fang, University of lllinois. All rights reserved. 13



Experiments on p-SiC nanorods, a-Si3N4
c whiskers and MWCNTs
§ 0 Quantized Levels
1 s 1 ¢ Si3N4-59GPa
7 A SiaN4-T5GPa
X SCanees
2 041 K — MWCNT-115GPa
s
Strength Levels E © @
and % 0.4- 0 0 0 &
06 Forbidden bands 2
8020 —
© o 1 2 3 56 7 8
0.4+
Quantized strength levels: experiments on B-SiC nanorods,
w———— o-Si,N, whiskers and MWCNTs, and QFM predicted

values.
From N. Pugno and R. S. Ruoff, Quantized fracture mechanics,
Philosophical Magazine 84 (2004), 2829-2845
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Space elevator:;
out of order?

Classical theories of the strength of solids, such as fracture mechanics
or those based on the maximum stress, assume a continuum. Even if
such a continuum hypothesis can be shown to work at the nanoscale
for elastic calculations, it has to be revised for computing the strength
of nanostructures or nanostructured materials. Accordingly, quantized
strength theories have recently been developed and validated by
atomistic and quantum-mechanical calculations or nanotensile tests.

As an example, the implications for the predicted strength, today
erroneously formulated, of a carbon-nanotube-based space elevator
megacable are discussed. In particular, the first ab initio statistical
prediction for megacable strength is derived here. Our findings suggest
that a megacable would have a strength lower than ~45 GPa.

Nicola Pugno, Nano Today, 2007(2)44-47
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@ Mechanical coupling at Nanoscale &%

 E.G. Piezo-
electricity (i.e.
electric potential
In response to
applied stress)

Polarizatian

AL=S-L,~E-d, I,

S =strain (relative length change AL/L, dimensionless)

LO= ceramic length [m]

E = electric field strength [V/m]

dij= piezoelectric coefficient of the material [m/V] See: www.physikinstrument.com
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@ Principle of Piezo-electric Effect #%:

Asymmetry in crystal
leads to separation of
charges under stress

Di :gijEj +djlaj

Electric polarization Strain effect

Inversely,
polarization in crystal Oj = Cuej T dIj Ej
Induces stress

Hooke’s law piezo effect
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Quartz Tuning Forks,
typically f=32KHz

ME 498

Stack of piezo-tubes

Z

Metal electrode
Piezoelectric
material
v Gnd
X

Y

© 2006-09 Nick Fang, University of lllinois. All rights reserved.

Figure 7-3.

Typical scanner
piezo tube and
XY-Z configurations.
AC signals applied
to conductive areas
of the tube create
piezo movement
along the three
major axes.
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@ Magneto-restrictive Effect

o
Magnetostriction is the W€
strain of a material in e §ﬂ§ |

response to change of
OOOO

magnetization.

“‘giant” magnetorestriction
found in nanostructured
materials

Application: Flat panel speakers (e.g.
sound bugs)  http://www.feonic.com/#comminfo

ME 498 © 2006-09 Nick Fang, University of lllinois. All rights reserved. 19



Shape Memory Effect

Austenite phase Austenite phase
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@ Memory Alloys Example %?:

A nitinol wire reverts back to its original shape upon
ME 498 heating © 2006-09 Nick Fang, University of lllinois. All rights reserved.
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Mechanical Nanoresonators £
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Putting Mechanics into
Quantum Mechanics,
Keith C. Schwab and
Michael L. Roukes,
Physics Today, 2005,
36-42)
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€ Thermal Noise in Resonators %

Cantilever total energy: o
120}
1 (az) 1 b
— m —_— = 2~32 ~ !
W Em[af]+2mwﬂz 5:_
\ \ % 40_
Each are subject to thermal @ 20
noise 1/2kT ot ., _ . . . .,
213460 21346? 213464 213f4ﬁe_slz 1;13453 213470
requency
W (w) = 29KT
P mz(woz - w2)2 4 Y22
where 7 = mw,/Q and w,? = k/m
_ 4KTBQ I
I:> 2B Wp () kwy, QX1 - w?/w ?)? + w?/w,?
From We get

(521/2 = 4KTB 0
kwy 53 2710 2Y2 & 102 1y 2
JQ(I - w2 /w )2 + wi/w,

(622)1/> = V2BW, ()
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@ Additional Reading

« Callister, Chapter 7&8, in Materials
Science and Engineering, 7th Edition, John
Wiley, 2007

 NanoHUB resource: "Synthesis & Mechanics
of Nanostructures & Nanocomposites” by
Rod Ruoff

» Cleland and Roukes, “Noise processes in
nanomechanical resonators”, JAP,
92(2002)2758
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