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@ Microscopic Transport Theory 8=

To understand nanoscale transport and energy
conversion, we need to know:

— How much energy/momentum can a particle have?
— How many particles have the specified energy E?
— How fast do they move?

— How do they interact with each other?

— How far can they travel?
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7 Average Distance between
Collisions, A, = L/(#of collisions)

E.G. Ideal Gas: Mean Free Path
Total Collision Volume
Swept = DL N = L _ 1

mcC 2
Number Density of Molecules = n nD°L No
Total number of molecules encountered in  &: collision cross-sectional area
swept collision volume ~ nrD2L ~nm?

ME 498 © 2006-09 Nick Fang, University of lllinois. All rights reserved. 3




@ Effect of Nanoscale confinement
/ A,: boundary separation
Wall

Effective Mean Free Path:

1 1

1 The smaller
- 4= dimension governs
7‘*b collision time!

A Amc
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4 Internal Energy and Specific Heat %

 Now we know the energy and momentum of
particles/carriers in the material, we can start

counting the properties
 E.G. Internal energy

Boltzmann Density of
Distribution States
1 By /.
— ’L / kBT (hirl)k) (Quantirrr)l Well) (Quantin]:il Wire) (Quﬂnll]:l]ljm Do)

Energy of
Carrier at
Given States

pi =€
=17
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@ Thermal Radiation (Stefan-Boltzmann) %?”*

47N (KgT)" - X
V(he)® ™ exp(x)-1

The emissive power of E T - T 4
Black body radiation: — G

Stefan-Boltzmann’s Law
<

Define: X=haw/kgT U(T) = dx

0 =5.67%x108 W/m? K4 .

O q= 0(T14 —T24)
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* The specific heat capacity is defined by change of internal
energy per unit temperature change:

107 i . .
ol .
108
4 ! Di
T d
U (X:T E 10° amon
Q 4
& 10
T
C OCT3 At low
i
temperature i
N . 0,=1860 K
10’ — L ¢
10! 102 103 -l
Temperature, T (K)
Specific heat of
diamond (Touloukian and Buyco, 1970).
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@ Kinetic Theory of Energy Transport {-ﬁ%{*

Cold
u(iz+4,) . R
5 o
‘ d, 0> %
u(z-/lz)"’\u
Hot
X
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Net Energy Flux

Z + 7LZ 1
4; =%V, [U(Z — A, )_ U(Z + A, )]
. 2
through Taylor expansion of u
Z-A d
z U
z, J, = _Vz%‘z d_Z
0 Solid Angle, dQ = sin6do6d¢
/
g - dO
"y
¢
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27[77

[ | cos?@sinodade

du | p=06-0
=—VA
dz 27 %
[ [sinfdade
0=00=0

Assuming local thermodynamic equilibrium: u = u(T)

Q; =—

}Ldu ar

3 dT dz 3

dT

Cvk—

dz

27r77

[ | cos?@sinodade

0=06=0

27

Thermal
Conductivity
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Ny?
Promising material
pehaviors (reduced

defects and faster
recovery) (this lecture)

E.G. artists’ view of space
elevators using CNTs

Coupling and quantum
effect on mechanical
response

(E.G. mechanical
thermometer)

Cleland and Roukes, Nature, 1998
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@ How Strong Are Crystalline Materials? *?ff%

ME 498

We have learned ...

— Crystal symmetries, bond potentials and
strengths

Today, we will compute theoretical strength
from this background

Demonstrate why theoretical strength is
purely theory

— Actual strength is 2-3 orders of magnitude lower
— Defects!!
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Energy 1

G(r)oca

° o, ‘ Strength

Look back at the potential ¢ \ ‘
function for two atoms. ,m

. . . ‘ a ' ’ I
Derivative is related to
strength.

Approximate strength curve
with a sinusoid:

O =0,SIN%

— o, = theoretical cohesive
strength
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@ Theoretical Cohesive Strength (Cont’) %%

* For small atomic displacements,

Displacement from equilibrium (r,) is taken as r

ar do o,7
O=0,— ==
a dr a
: tre
+ Elastic modulus: E=>">=7°
strain  r/r,
. E o,7
 Equating: —=
r, a =
* For most materials, a ~ r o, =—
/4
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* Theory states:

« Way too high for common materials (100-1000x too high)
« Look at “whiskers”

— Small, “defect-free” fibers

— Agreement is a little better.

O'f E
Material GPa (psi X 10% GPa (psi X 10%) Eloy
Silica fibers 24.1 (3.5) 97.1 (14.1) 4
Iron whisker 13.1 (1.91) 295.2 (42.9) 23
Silicon whisker 6.47 (0.94) 165.7 (24.1) 26
Alumina whisker 15.2 (2.21) 496.2 (72.2) 33
Ausformed steel 3.14 (0.46) 200.1 (29.1) 64
Piano wire 2.75 (0.40) 200.1 (29.1) 73

oo —

From: Hertzberg, p.76.
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T &

!

Tensile Shear

* Previous analysis
— Energy necessary to tear planes of atoms apart from each other
— Tensile strength of primary bonds

« What about energy needed to cause slipping in shear?
— Theoretical yield strength
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Strength

ME 498

. . . Shear
Approximate as sinusoid, r — 71 sjn 2
periodic in b, Sm b
F Il angl T =1, SN2~ 2K

or small angles, m b m b

Assume elastic strains, T =09y
For small shear strains,
where a is the distance ~ X
between slip planes (a=b) 7V ® 3 r=0G2%
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 Equating shear stresses

X ~ 27X
Ga®™m % r ~ 8
_ Gb m 27
t'm ~ 2
« Remember Mohr's circle (uniaxial tension)
| oy~ 27,
§ G=_E ~E
- 2(1+v) ~ 2.6
N E
bl — | Still too high!
| Y 8

A 4
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@ Comparisons of Theoretical Strength

1000,
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M. F. Ashby, Materials Selection in Mechanical Design, °

Experimental strengths
~100x lower than theory

Some experiments show
discrepancy to be ~1000x

 Whiskers and fibers can
come close, but not exact.

TABLE 2.2 Theoretical and Experimental Strengths of Dislocation-Free
Crystal (Whiskers)®

Theoretical Strength

(G2m) Experimental Strength

Material GPa 10° psi GPa 105 psi Error
Copper 19.1 277 3.0 0.44 ~6
Nickel 334 4.84 39 0.57 ~8.5
Iron 31.8 4.61 13 1.89 ~25
B,C 71.6 10.4 6.7 0.98 ~10.5
SiC 132.1 19.2 11 1.60 ~12
ALO, 65.3 9.47 19 2.76 ~3.5
C 156.0 22.6 21 3.05 ~7

Need an explanation for

1999, pg 424

ME 498

lower strength = defects!
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Defects in Solids

To this point we have assumed perfect order in
crystals

Defects always exist in real materials
Sometimes we add “defects” - alloying

Classifications of defects

Usually referring to geometry or dimension of defect
Point : 1-2 atomic positions (10-1© m)- e.g. vacancies,
interstitials

Line: 1-Dimensional (10-° to 10> m)- e.g. dislocations
Interfacial: 2-Dimensional (108 — 102 m) - e.g. grain
boundaries

Volume: 3-Dimensional (104 — 102 m) - e.g. pores,
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@ Point Defects

 \Vacancies:
-vacant atomic sites in a structure.

.
f. H, .f Vacancy
g ""J
distortion .I I T .I. T
of planes .§

» Self-Interstitials:
-"extra" atoms positioned between atomic sites.

self-

Interstitial
distortion
of planes
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Adapted from Fig. 4.5, Callister 7e.
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@ Bulk Dislocation Movement

Shear must act in direction of Burgers vector b

Edge
— Positive & negative

Screw
— Right-hand & left-hand

Analogies for motion
— Caterpillar crawling

ALTIenIN 'y ansiiiatran'y foniantier OO

=33 XL = o :
; S @ e fRiiisa

From: Callister, p.156
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2-Dimensional in extent
External surfaces

— Do not bond to
maximum nearest
neighbors = high
surface energy

Grain Boundaries

— Boundary separating
two grains (crystals)

— Atoms bonded less
regularly along these
boundaries

_ 902 oY
— Larger grains have lower .’.*..‘H» =)

total interfacial energy
— High angle (more

energy) vs. low angle

boundaries
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Angle of misalignment

From: Callister, p.79, 84.




Stress Fields
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Adapted from Fig. 7.4,
Callister 7e.

Extra half plane of atoms
cause lattice distortions

Result in tensile,
compressive, and shear
strains in neighboring atoms

— Magnitude decreases with
distance

— Pure compression and tension
directly above and below slip
line

— Over most of the effected
region combination of stresses

Screw dislocation

— Pure shear
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@ Elastic Properties of Dislocations ﬁ*}

)

ME 498

For small strains

Shear strain: Yoy = %
From Hooke's law: T =Gyg =2

Elastic strain energy:

1h 1MGb%dr cp? [
Egorew = - | Tbdr == [~ = ==2 ol 1
screw Zr{TQZ r Zr{ 27[ r A In('b]

Similarly for edge dislocation

Gb? I
E ——"" In=2
e Az(l-v) n(r()]

_ 2
For our purposes, use: Eedge = aGDb

o IS geometrical factor
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«  Want to be in lowest possible energy state

— When “far” apart, Burger's vectors have no influence on each
other

— When together, there will be interaction between the two
« Attract each other if Burger’s vectors cancel
 Repel if Burger’s vectors are of same sign

Apart
E = aGb? + aG(-b)* = 2aGb?
Together

E=aG(b+(-b)) =

Apart

E = aGb? + aGb? = 2aGb?
Together

E =aG(b+b)* = 4aGb?
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4 Dislocation-Dislocation Interactions

—
L T
Dislocations < perfect crystal
Annihilated :
—
L
-
I
T ¢ ' -
. - void T
AN\
S L Immobilized , ,
T . - K
N~ Dislocations ; 1
n (T Repelled L =
AEHD AN
7 U )
T
T
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@ Microscopic View of Strain-Stress %

o (MPa)

e (%)
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Results from crack propagation
 Griffith Crack

Oy = 2Go E :@o
L

a stress concentration factor

e

¥ where
p, = radius of curvature

c, = applied stress
o, = stress at crack tip

J For a crack, typically have
(a) a=103m
i — *
p=10°m Ojgeq = 2000 Gapplied
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a

crit

Minimum criterion for stable
crack growth:

Strain energy goes into surface
energy
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T a
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@ So When Does Crack Propagate?

Crack propagates rapidly if above critical

stress EG 1/2
.e., 6.,>0C _ C
m ~ Oc O, =
d
O NTA= EG = constant!
where ‘ ¢
— E = modulus of elasticity
— Gc = specific energy release rate Measurable (fixed)

materials properties

— a=one half length of internal crack
Fracture Toughness, K,

Brittle: Gg =2y, Ductile:  G¢ = 2(75 +7/p)
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@ Additional Reading

« Callister, Chapter 7&8, in Materials
Science and Engineering, 7th Edition, John
Wiley, 2007

 NanoHUB resource: “"Synthesis & Mechanics

of Nanostructures & Nanocomposites” by
Rod Ruoff

* Cleland and Roukes, “Noise processes in

nanomechanical resonators”, JAP,
92(2002)2758
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