

Introduction of Nano Science and Tech

Basics of Solid Mechanics in Nanostructures

Nick Fang

Course Website: nanoHUB.org

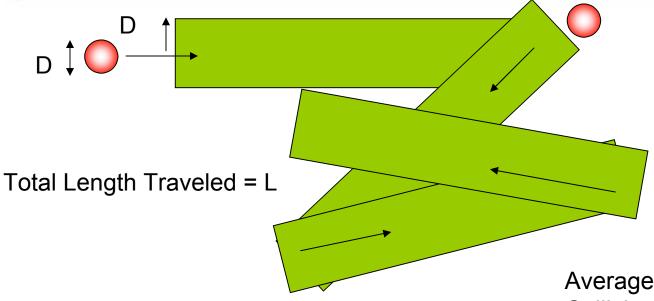
Compass.illinois.edu

Microscopic Transport Theory

To understand nanoscale transport and energy conversion, we need to know:

- How much energy/momentum can a particle have?
- How many particles have the specified energy E?
- How fast do they move?
- How do they interact with each other?
- How far can they travel?

How Far Can They Travel?



E.G. Ideal Gas: Total Collision Volume Swept = $\pi D^2 L$

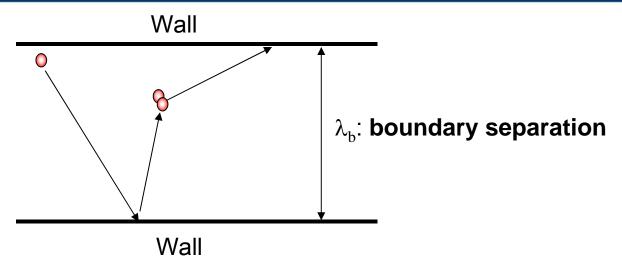
Number Density of Molecules = n Total number of molecules encountered in swept collision volume $\sim n\pi D^2 L$ Average Distance between Collisions, $\lambda_{mc} = L/(\#of\ collisions)$

Mean Free Path

$$\lambda_{mc} = \frac{L}{n\pi D^2 L} = \frac{1}{n\sigma}$$

σ: collision cross-sectional area ~ nm²

Effect of Nanoscale confinement



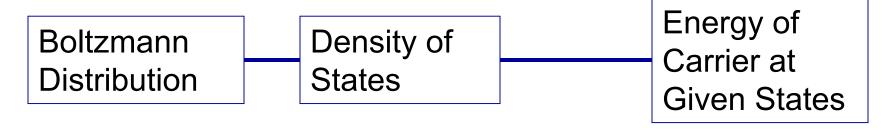
Effective Mean Free Path:

$$\frac{1}{\lambda} = \frac{1}{\lambda_{mc}} + \frac{1}{\lambda_{b}}$$

The smaller dimension governs collision time!

Internal Energy and Specific Heat

- Now we know the energy and momentum of particles/carriers in the material, we can start counting the properties
- E.G. Internal energy



$$p_i = \frac{1}{Z} e^{-E_i/k_B T} \left(\begin{array}{c} \text{3D} & \text{2D} & \text{1D} & \text{0D} \\ \text{(Quantum Well)} & \text{(Quantum Wire)} & \text{(Quantum Dot)} \end{array} \right) \quad \text{Vibration} \quad \text{Rotation}$$

Thermal Radiation (Stefan-Boltzmann)

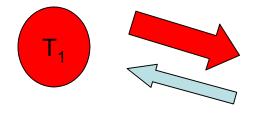
Define: $x = h\omega/k_BT$

$$U(T) = \frac{4\pi N (k_B T)^4}{V(hc)^3} \int_0^\infty \frac{x^3}{\exp(x) - 1} dx$$

The emissive power of Black body radiation:

$$E(T) = \sigma T^4$$

Stefan-Boltzmann's Law



$$\sigma = 5.67 \times 10^{-8} \text{ W/m}^2 K^4$$
.

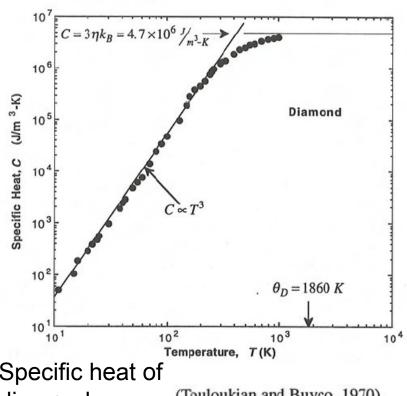
$$q = \sigma \left(T_1^4 - T_2^4 \right)$$

Specific Heat Capacity

The specific heat capacity is defined by change of internal energy per unit temperature change:

$$C_V = \frac{\partial U}{\partial T}$$

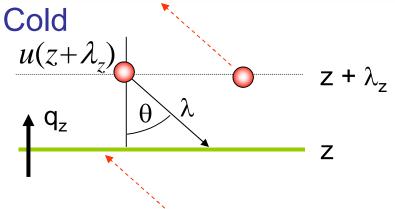
$$U \propto T^4$$



Specific heat of diamond

(Touloukian and Buyco, 1970).

Kinetic Theory of Energy Transport



X

 $z - \lambda_z$

Hot

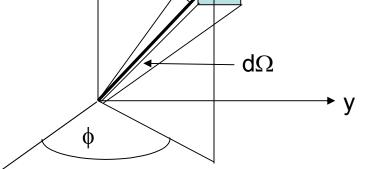
Net Energy Flux

$$q_z = \frac{1}{2}v_z[u(z - \lambda_z) - u(z + \lambda_z)]$$

through Taylor expansion of u

$$q_z = -v_z \lambda_z \frac{du}{dz}$$

Solid Angle, $d\Omega = \sin\theta d\theta d\phi$



θ

Averaging over all the solid angles

$$\left| q_z = -v\lambda \frac{du}{dz} \begin{bmatrix} \frac{2\pi}{\int} \int_{0}^{\pi/2} \cos^2\theta \sin\theta d\theta d\phi \\ \frac{\varphi = 0}{2\pi} \frac{\theta = 0}{\int_{0}^{\pi/2} \int_{0}^{\pi/2} \sin\theta d\theta d\phi} \end{bmatrix} = -v\lambda \frac{du}{dz} \begin{bmatrix} \frac{2\pi}{\int} \int_{0}^{\pi/2} \cos^2\theta \sin\theta d\theta d\phi \\ \frac{\varphi = 0}{2\pi} \frac{\theta = 0}{2\pi} \end{bmatrix} = -\frac{1}{3}v\lambda \frac{du}{dz}$$

Assuming local thermodynamic equilibrium: u = u(T)

$$q_z = -\frac{1}{3}v\lambda \frac{du}{dT}\frac{dT}{dz} = -\frac{1}{3}Cv\lambda \frac{dT}{dz}$$
 Thermal Conductivity $k = \frac{1}{3}Cv\lambda$

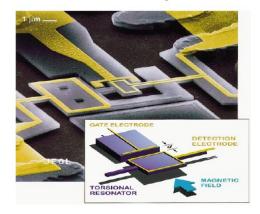
$$k = \frac{1}{3}Cv\lambda$$

Mechanics at Nanoscale

- Why?
 - Promising material
 behaviors (reduced
 defects and faster
 recovery) (this lecture)
 - Coupling and quantum effect on mechanical response

(E.G. mechanical thermometer)

E.G. artists' view of space elevators using CNTs



Cleland and Roukes, Nature, 1998

How Strong Are Crystalline Materials?

- We have learned ...
 - Crystal symmetries, bond potentials and strengths
- Today, we will compute theoretical strength from this background
- Demonstrate why theoretical strength is purely theory
 - Actual strength is 2-3 orders of magnitude lower
 - Defects!!

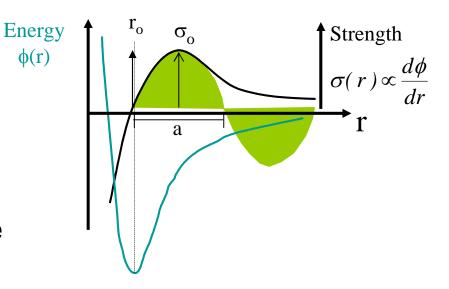
Theoretical Cohesive Strength

 $\phi(r)$

- Look back at the potential function for two atoms.
- Derivative is related to strength.
- Approximate strength curve with a sinusoid:

$$\sigma = \sigma_o \sin \frac{\pi r}{a}$$

 σ_0 = theoretical cohesive strength



Theoretical Cohesive Strength (Cont')

For small atomic displacements,

Displacement from equilibrium (r_0) is taken as r

$$\sigma = \sigma_o \frac{\pi r}{a} \qquad \Rightarrow \frac{d\sigma}{dr} = \frac{\sigma_o \pi}{a}$$

• Elastic modulus:
$$E = \frac{stress}{strain} = \frac{\sigma}{r/r_o}$$

• Equating: $\frac{E}{r_o} = \frac{\sigma_o \pi}{a}$

$$\frac{E}{r_o} = \frac{\sigma_o \pi}{a}$$

For most materials, a ~ r₀

$$\sigma_o = \frac{E}{\pi}$$

How Close is Theory?

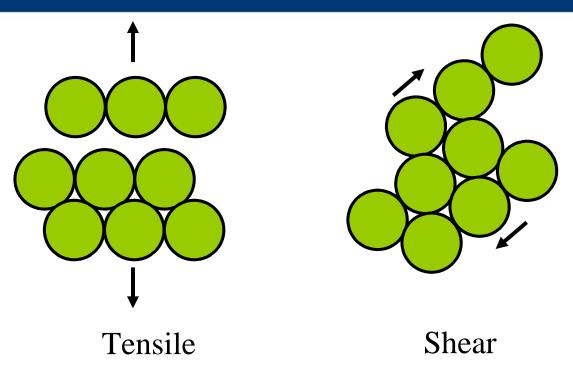
Theory states:

- $\sigma_o = \frac{E}{\pi}$
- Way too high for common materials (100-1000x too high)
- Look at "whiskers"
 - Small, "defect-free" fibers
 - Agreement is a little better.

Material	$\sigma_{\!f}$		\boldsymbol{E}		
	GPa	$(psi \times 10^6)$	GPa	$(psi \times 10^6)$	E/σ_f
Silica fibers	24.1	(3.5)	97.1	(14.1)	4
Iron whisker	13.1	(1.91)	295.2	(42.9)	23
Silicon whisker	6.47	(0.94)	165.7	(24.1)	26
Alumina whisker	15.2	(2.21)	496.2	(72.2)	33
Ausformed steel	3.14	(0.46)	200.1	(29.1)	64
Piano wire	2.75	(0.40)	200.1	(29.1)	73

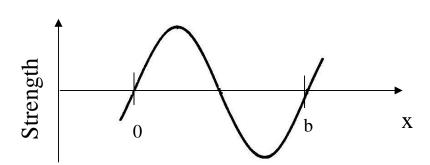
From: Hertzberg, p.76.

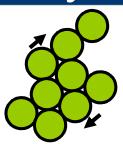
Failure in Tension vs. Shear



- Previous analysis
 - Energy necessary to tear planes of atoms apart from each other
 - Tensile strength of primary bonds
- What about energy needed to cause slipping in shear?
 - Theoretical yield strength

Frenkel Analysis





Approximate as sinusoid, periodic in b,

Shear $\tau = \tau_m \sin \frac{2\pi x}{b}$

For small angles,

 $\tau = \tau_m \sin \frac{2\pi x}{b} \approx \tau_m \frac{2\pi x}{b}$

Assume elastic strains,

 $\tau = G\gamma$

 For small shear strains, where a is the distance between slip planes (a≅b)

$$\gamma \approx \frac{x}{a}$$
 $\tau = G\frac{x}{a}$

Frenkel Analysis (Cont')

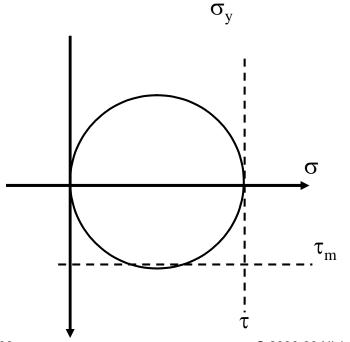
Equating shear stresses

$$G \frac{x}{a} \approx \tau_m \frac{2\pi x}{b}$$

$$\tau_m \approx \frac{Gb}{2\pi a}$$

$$\tau_m \approx \frac{G}{2\pi}$$

Remember Mohr's circle (uniaxial tension)



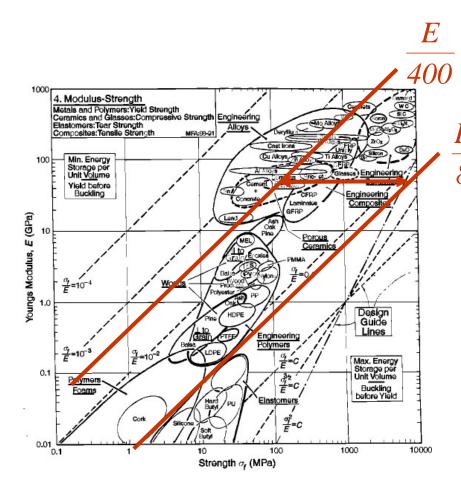
$$\sigma_y \approx 2\tau_m$$

$$G = \frac{E}{2(1+\nu)} \approx \frac{E}{2.6}$$

$$\sigma_{y} \approx \frac{E}{8}$$

Still too high!

Comparisons of Theoretical Strength



- Experimental strengths
 ~100x lower than theory
- Some experiments show discrepancy to be ~1000x
- Whiskers and fibers can come close, but not exact.

TABLE 2.2 Theoretical and Experimental Strengths of Dislocation-Free Crystal (Whiskers) 6

Material	Theoretical Strength (G/2π)		Experimental Strength		
	GPa	10 ⁶ psi	GPa	10 ⁶ psi	Error
Copper	19.1	2.77	3.0	0.44	~6
Nickel	33.4	4.84	3.9	0.57	~8.5
Iron	31.8	4.61	13	1.89	~2.5
B_4C	71.6	10.4	6.7	0.98	~10.5
SiC	132.1	19.2	11	1.60	~12
Al_2O_3	65.3	9.47	19	2.76	~3.5
c	156.0	22.6	21	3.05	~7

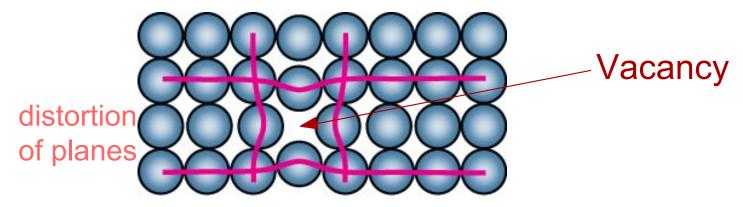
- M. F. Ashby, <u>Materials Selection in Mechanical Design</u>, 1999, pg 424
- Need an explanation for lower strength ⇒ defects!

Defects in Solids

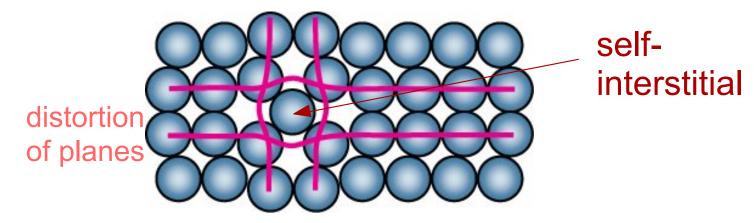
- To this point we have assumed perfect order in crystals
 - Defects always exist in real materials
 - Sometimes we add "defects" alloying
- Classifications of defects
 - Usually referring to geometry or dimension of defect
 - **Point**: 1-2 atomic positions (10⁻¹⁰ m)- e.g. vacancies, interstitials
 - Line: 1-Dimensional (10⁻⁹ to 10⁻⁵ m)- e.g. dislocations
 - Interfacial: 2-Dimensional (10⁻⁸ 10⁻² m) e.g. grain boundaries
 - Volume: 3-Dimensional (10⁻⁴ 10⁻² m) e.g. pores, cracks

Point Defects

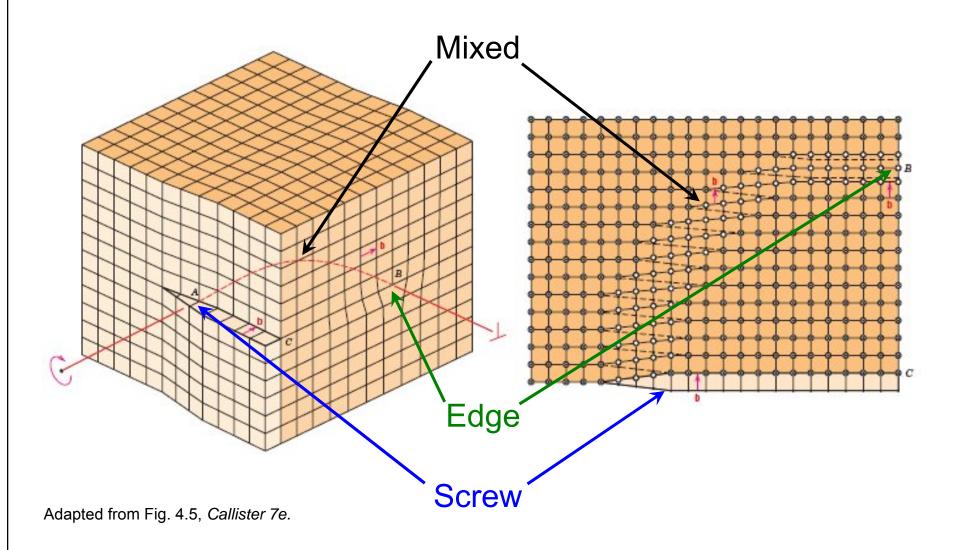
- Vacancies:
 - -vacant atomic sites in a structure.



- Self-Interstitials:
 - -"extra" atoms positioned between atomic sites.



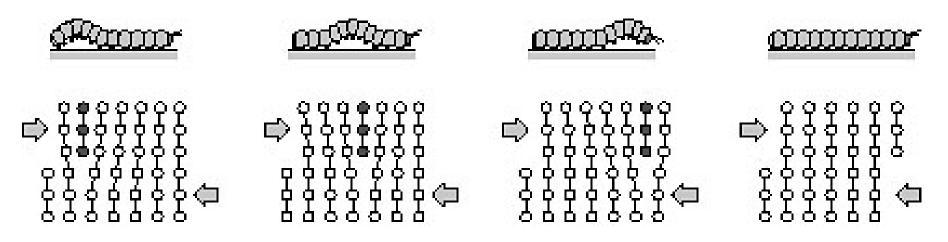
Edge, Screw, and Mixed Dislocations



Bulk Dislocation Movement

- Shear must act in direction of Burgers vector
- b

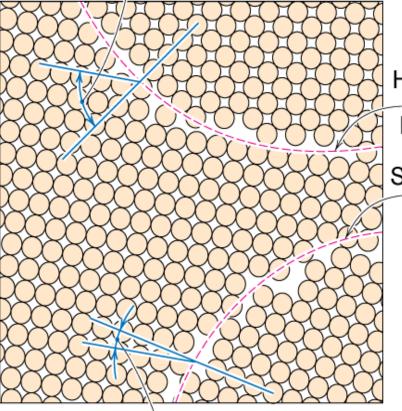
- Edge
 - Positive & negative
- Screw
 - Right-hand & left-hand
- Analogies for motion
 - Caterpillar crawling



From: Callister, p.156

Interfacial Defects - Planar

- 2-Dimensional in extent
- External surfaces
 - Do not bond to maximum nearest neighbors ⇒ high surface energy
- Grain Boundaries
 - Boundary separating two grains (crystals)
 - Atoms bonded less regularly along these boundaries
 - Larger grains have lower total interfacial energy
 - High angle (more energy) vs. low angle boundaries



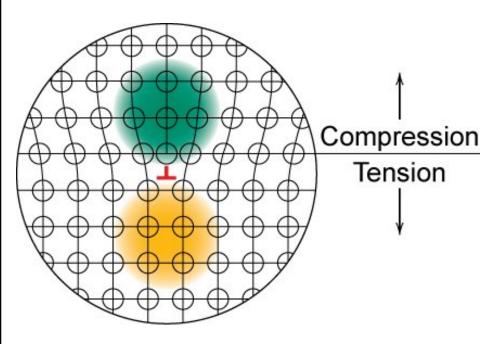
High-angle grain boundary

Small-angle grain boundary

Angle of misalignment

From: Callister, p.79, 84.

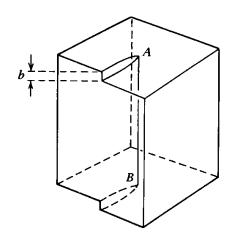
Stress Fields



Adapted from Fig. 7.4, *Callister 7e.*

- Extra half plane of atoms cause lattice distortions
- Result in tensile, compressive, and shear strains in neighboring atoms
 - Magnitude decreases with distance
 - Pure compression and tension directly above and below slip line
 - Over most of the effected region combination of stresses
- Screw dislocation
 - Pure shear

Elastic Properties of Dislocations



For small strains

Shear strain: $\gamma_{\theta z} = \frac{b}{2\pi r}$

From Hooke's law: $au_{\theta z} = G \gamma_{\theta z} = \frac{Gb}{2\pi r}$

Elastic strain energy:

$$E_{screw} = \frac{1}{2} \int_{r_o}^{r_l} \tau_{\theta z} b dr = \frac{1}{2} \int_{r_o}^{r_l} \frac{Gb^2}{2\pi} \frac{dr}{r} = \frac{Gb^2}{4\pi} ln \left(\frac{r_l}{r_0} \right)$$

Similarly for edge dislocation

$$E_{edge} = \frac{Gb^2}{4\pi(1-\nu)} \ln\left(\frac{r_1}{r_0}\right)$$

For our purposes, use:

$$E_{edge} = \alpha G b^2$$

 α is geometrical factor

Dislocation Energetics

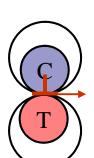
- Want to be in lowest possible energy state
 - When "far" apart, Burger's vectors have no influence on each other
 - When together, there will be interaction between the two
 - Attract each other if Burger's vectors cancel
 - Repel if Burger's vectors are of same sign

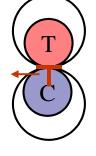
Apart

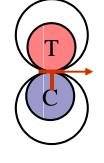
$$E = \alpha Gb^{2} + \alpha G(-b)^{2} = 2\alpha Gb^{2}$$

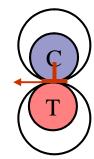
Together

$$E = \alpha G(b + (-b))^2 = 0$$







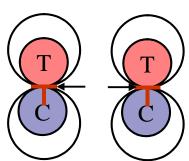


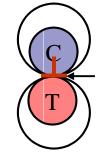
Apart

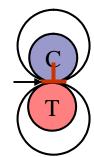
$$E = \alpha Gb^2 + \alpha Gb^2 = 2\alpha Gb^2$$

Together

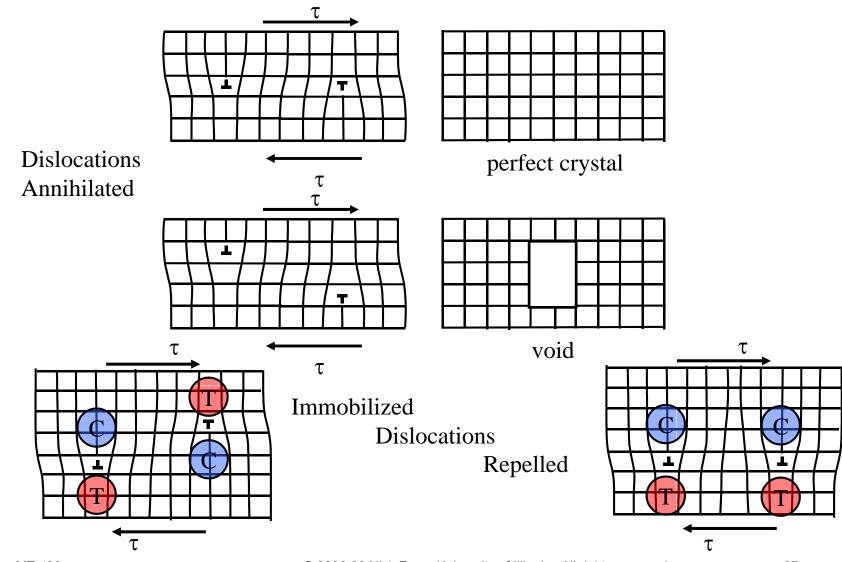
$$E = \alpha G(b+b)^2 = 4\alpha Gb^2$$



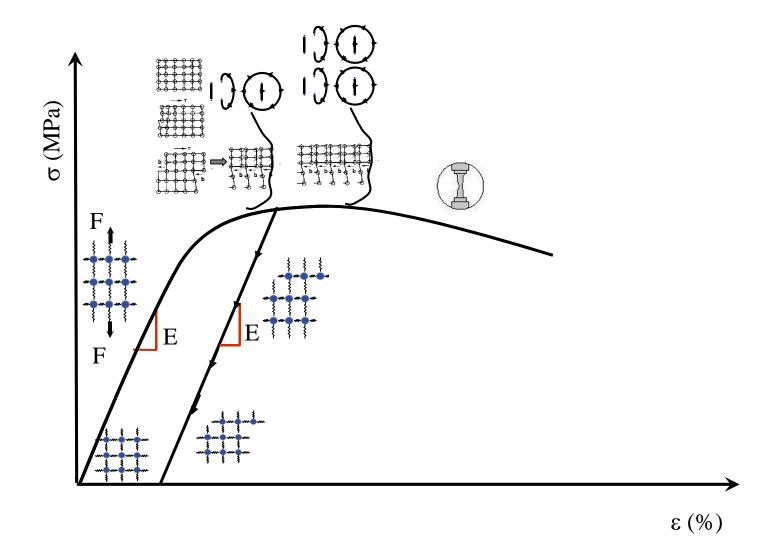




Dislocation-Dislocation Interactions

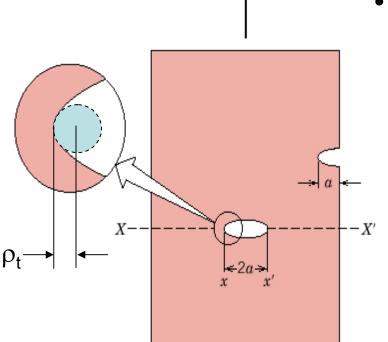


Microscopic View of Strain-Stress



Flaws are Stress Concentrators!

Griffith Crack



(a)

$$\sigma_m = 2\sigma_o \left(\frac{a}{\rho_t}\right)^{1/2} = \kappa_o$$

a stress concentration factor

where

 ρ_t = radius of curvature

 σ_o = applied stress

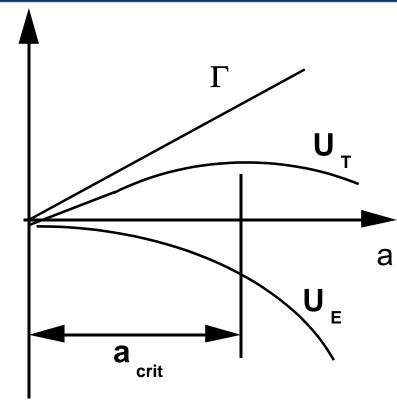
 σ_m = stress at crack tip

For a crack, typically have

$$a = 10^{-3} m$$

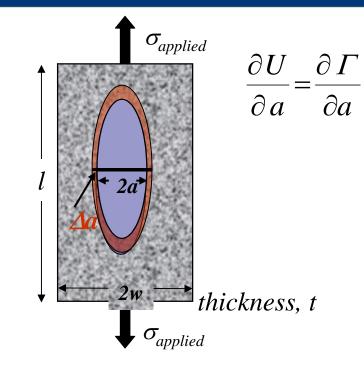
$$\rho = 10^{-9} \text{m}$$
 $\sigma_{local} = 2000 * \sigma_{applied}$

Griffith Approach



Minimum criterion for stable crack growth:

Strain energy goes into surface energy



$$\frac{\partial}{\partial a} \left(\frac{\sigma^2}{2E} \pi \, 2 \, a^2 \, t \right) = \frac{\partial}{\partial a} (\gamma_s \, 4 \, a \, t)$$

Furface
$$\sigma = \sqrt{\frac{2\,E\,\gamma_s}{\pi\,a}}$$
 © 2006-09 Nick Fang University of Illinois. All rights reserved.

So When Does Crack Propagate?

Crack propagates rapidly if above critical

stress

i.e.,
$$\sigma_m > \sigma_c$$

$$\sigma_c = \left(\frac{EG_c}{\pi a}\right)^{1/2}$$

 $\sigma_c \sqrt{\pi a} = \sqrt{EG_c}$ = constant!!

where

- E = modulus of elasticity
- Gc = specific energy release rate
- -a = one half length of internal crack

Measurable (fixed)
materials properties
<u>Fracture Toughness</u>, K_c

Brittle:
$$G_C = 2\gamma_s$$
 Ductile: $G_C = 2(\gamma_s + \gamma_p)$

Additional Reading

- Callister, Chapter 7&8, in *Materials* Science and Engineering, 7th Edition, John Wiley, 2007
- NanoHUB resource: "Synthesis & Mechanics of Nanostructures & Nanocomposites" by Rod Ruoff

 Cleland and Roukes, "Noise processes in nanomechanical resonators", JAP, 92(2002)2758