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Microscopic Transport Theory

To understand nanoscale transport and energy 
conversion, we need to know: 

— How much energy/momentum can a particle have?

— How many particles have the specified energy E? 

— How fast do they move? 

— How do they interact with each other?

— How far can they travel?
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D

D

How Far Can They Travel? 

Total Length Traveled = L

E.G. Ideal Gas:
Total Collision Volume
Swept = D2L

Number Density of Molecules = n 

Total number of molecules encountered in
swept collision volume ~ nD2L

Average Distance between
Collisions, mc = L/(#of collisions)

Mean Free Path

 nLDn

L
mc

1
2



: collision cross-sectional area
~ nm2
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Wall

Wall

b: boundary separation

Effective Mean Free Path:  

Effect of Nanoscale confinement

bmc 
111


The smaller 
dimension governs 
collision time!
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Internal Energy and Specific Heat

• Now we know the energy and momentum of 
particles/carriers in the material, we can start 
counting the properties

• E.G. Internal energy

Boltzmann 
Distribution

Density of 
States

Energy of  
Carrier at 
Given States

Translation

Vibration

Rotation
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Thermal Radiation (Stefan-Boltzmann)

/ Bx k T hDefine:
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The emissive power of 
Black body radiation: 

4( )E T T
Stefan-Boltzmann’s Law

σ =5.67×10-8 W/m2 K4 . T1

T2  4 4
1 2q T T 
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Specific Heat Capacity

• The specific heat capacity is defined by change of internal 
energy per unit temperature change:

Specific heat of 
diamond

4U T

V
U

C
T





3
VC T At low 

temperature
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Kinetic Theory of  Energy Transport

z

Solid Angle, d = sindd

x
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
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z - z

z + z

u(z-z)

u(z+z)

     zzzz zuzuvq  
2

1
qz

Net Energy Flux 

dz

du
vq zzz 

through Taylor expansion of u

Hot

Cold
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Averaging over all the solid angles
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Assuming local thermodynamic equilibrium: u = u(T)
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1


Thermal
Conductivity
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Mechanics at Nanoscale

• Why?
– Promising material 

behaviors (reduced 
defects and faster 
recovery) (this lecture)

– Coupling and quantum 
effect on mechanical 
response

(E.G. mechanical 
thermometer)  

E.G. artists’ view of space 
elevators using CNTs

Cleland and Roukes, Nature, 1998
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How Strong Are Crystalline Materials?

• We have learned ...
– Crystal symmetries, bond potentials and 

strengths

• Today, we will compute theoretical strength 
from this background

• Demonstrate why theoretical strength is 
purely theory
– Actual strength is 2-3 orders of magnitude lower

– Defects!! 
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• Look back at the potential 
function for two atoms. 

• Derivative is related to 
strength.

• Approximate strength curve 

with a  sinusoid:

– o = theoretical cohesive 

strength

Theoretical Cohesive Strength

a
r

o sin  

ra

dr
d

)r(
 

Strengtho
roEnergy

(r)
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Theoretical Cohesive Strength (Cont’)

• For small atomic displacements,

Displacement from equilibrium (ro) is taken as r

• Elastic modulus:

• Equating:

• For most materials, a ~ r0

a
r

o
 

adr

d o


orrstrain
stress

E




ar
E o

o





 E

o 
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How Close is Theory?

• Theory states:

• Way too high for common materials (100-1000x too high)

• Look at “whiskers”

– Small, “defect-free” fibers 

– Agreement is a little better.


 E

o 

From: Hertzberg, p.76.
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Failure in Tension vs. Shear

Tensile Shear

• Previous analysis 
– Energy necessary to tear planes of atoms apart from each other 

– Tensile strength of primary bonds

• What about energy needed to cause slipping in shear? 
– Theoretical yield strength
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• Approximate as sinusoid, 
periodic in b,

• For small angles,

• Assume elastic strains,
• For small shear strains,     

where a is the distance 
between slip planes (ab)

Frenkel Analysis

xSt
re

ng
th

0 b

b
x2

m sin  

 G
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x

b
x2

mb
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m sin   

a
xG

Shear
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Frenkel Analysis (Cont’) 





y

m

• Equating shear stresses

• Remember Mohr’s circle (uniaxial tension)

my 2 

  6.2
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Still too high!
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Comparisons of Theoretical Strength

• Experimental strengths 
~100x lower than theory

• Some experiments show 
discrepancy to be ~1000x

• Whiskers and fibers can 
come close, but not exact.

• Need an explanation for 
lower strength  defects!

M. F. Ashby, Materials Selection in Mechanical Design, 
1999, pg 424

8
E

400
E
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Defects in Solids

• To this point we have assumed perfect order in 
crystals
– Defects always exist in real materials
– Sometimes we add “defects” - alloying

• Classifications of defects
– Usually referring to geometry or dimension of defect
– Point : 1-2 atomic positions (10-10 m)- e.g. vacancies, 

interstitials
– Line: 1-Dimensional (10-9 to 10-5 m)- e.g. dislocations
– Interfacial: 2-Dimensional (10-8 – 10-2 m) - e.g. grain 

boundaries 
– Volume: 3-Dimensional (10-4 – 10-2 m) - e.g. pores, 

cracks
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• Vacancies:
-vacant atomic sites in a structure.

• Self-Interstitials:
-"extra" atoms positioned between atomic sites.

Point Defects

Vacancy
distortion 
of planes

self-
interstitial

distortion 
of planes
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Edge, Screw, and Mixed Dislocations

Adapted from Fig. 4.5, Callister 7e.

Edge

Screw

Mixed
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Bulk Dislocation Movement
• Shear must act in direction of  Burgers vector

• Edge
– Positive & negative

• Screw
– Right-hand & left-hand

• Analogies for motion
– Caterpillar crawling

From: Callister, p.156

b

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Interfacial Defects - Planar

• 2-Dimensional in extent

• External surfaces

– Do not bond to 
maximum nearest 
neighbors  high 
surface energy

• Grain Boundaries

– Boundary separating 
two grains (crystals)

– Atoms bonded less 
regularly along these 
boundaries

– Larger grains have lower 
total interfacial energy

– High angle (more 
energy) vs. low angle 
boundaries

From: Callister, p.79, 84.
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Stress Fields

• Extra half plane of atoms 
cause lattice distortions

• Result in tensile, 
compressive, and shear
strains in neighboring atoms
– Magnitude decreases with 

distance
– Pure compression and tension 

directly above and below slip 
line

– Over most of the effected 
region combination of stresses

• Screw dislocation
– Pure shear 

Adapted from Fig. 7.4, 
Callister 7e.
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Elastic Properties of Dislocations

For small strains

Shear strain:

From Hooke’s law:

Elastic strain energy:

Similarly for edge dislocation

For our purposes, use:

 is geometrical factor
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Dislocation Energetics
• Want to be in lowest possible energy state

– When “far” apart, Burger’s vectors have no influence on each 
other

– When together, there will be interaction between the two

• Attract each other if Burger’s vectors cancel

• Repel if Burger’s vectors are of same sign

T

C

C

T

T

C

C

T

Apart

  222 Gb2bGGbE  
Together

   0bbGE 2 

T

C

T

C

C

T

C

T

222 Gb2GbGbE  
Apart

  22 Gb4bbGE  
Together
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Dislocation-Dislocation Interactions





perfect crystal





void

Immobilized 
Dislocations

Repelled





CC

TT



C
C



T

T

Dislocations
Annihilated



ME 498 © 2006-09 Nick Fang, University of Illinois.  All rights reserved. 28

E

F

F

Microscopic View of Strain-Stress


(M
Pa

)

 (%)
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Flaws are Stress Concentrators!

t

Results from crack propagation

• Griffith Crack

where 
t = radius of curvature

o = applied stress

m = stress at crack tip

    
m  2o

a

t











1/ 2

 Kto

For a crack, typically have
a = 10-3m
 = 10-9m 2000*local applied 

a stress concentration factor
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thickness, t

Griffith Approach

Minimum criterion for stable 
crack growth:

Strain energy goes into surface 
energy

applied

applied
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So When Does Crack Propagate?

Crack propagates rapidly if above critical 
stress

where
– E = modulus of elasticity

– Gc = specific energy release rate

– a = one half length of internal crack

1/ 2
c

c
EG

a



   
 

i.e.,  m > c

 2C s pG   Ductile:2C sG Brittle:

C c
a EG   = constant!!

Fracture Toughness, Kc

Measurable (fixed) 
materials properties
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Additional Reading

• Callister, Chapter 7&8, in Materials 
Science and Engineering, 7th Edition, John 
Wiley, 2007

• NanoHUB resource: “Synthesis & Mechanics 
of Nanostructures & Nanocomposites” by 
Rod Ruoff

• Cleland and Roukes, “Noise processes in 
nanomechanical resonators”, JAP, 
92(2002)2758 


