ME597/PHYS57000

Fall Semester 2009

Lecture 02

Electron States in Solids - Bloch Functions
Kronig-Penney Model
Density of States

What happens when the electron-ion interaction is more realistically approximated?
 the 1D Kronig-Penney Model

Model A:

Note that $U(x)=U(x+a+b)$

The periodic delta function Kronig Penney Model (1930)

Model B:
$\mathrm{U}(\mathrm{x})$

$\mathrm{L}=\mathrm{Na}$

Note that $\mathrm{U}(\mathrm{x})=\mathrm{U}(\mathrm{x}+\mathrm{a})$

Model C:

Etc...

Any Unifying Principles?

> Whenever $U(x)$ is periodic, the resulting
> Schrödinger equation belongs to a class of differential equations known as Hill's equation.

Mathematicians have shown that solutions to Hill's equation must obey Floquet's theorm (aka as Bloch's theorem) which states that solutions ψ must be of the form:

$$
\Psi_{k}(x)=u_{k}(x) e^{i k x}
$$

where $u_{k}(x)$ is some function (that depends on k) which must have the same periodicity as the lattice.
$U_{k}(X)$ are known as Bloch functions

What's it Mean?

- Bloch's theorem's states that no matter what the form of the periodic potential, the solutions must have certain properties that satisfy very general conditions.
- Consider $\mathrm{u}_{\mathrm{k}}(\mathrm{x})$ as a "correction factor" to generate solutions for periodic potentials starting from the trivial $e^{i k x}$ solutions for constant potential. The $u_{k}(x)$ are related to atomic wavefunctions.
- k is an index that distinguishes the various solutions

Plot of $\Psi_{k}(x)$

Figure 3-44 A wave-function for an electron in the 3 s band of metallic sodium as a function of position, for the eigen-energy which corresponds with $k=\pi / 4 \mathrm{a}$. After J. C. Slater, Rev. Mod. Phys. 6, 209 (1934). The dashed curve shows the simple plane wave which approximates the wave-function fairly well in the regions of space outside the atomic cores.

Under these circumstances, what is the relationship between E and k ??

What determines "Bloch form" for ψ ?

Due to the translation symmetry of $U(x)$, an electron has same probabilty to be at equivalent points in the lattice.

This means $\Psi(x+a)$ should be somehow related to $\Psi(x)$.
Accordingly, $|\Psi(x+m a)|^{2}=|\Psi(x)|^{2} \quad m=1,2,3 \ldots . N$

This means $\Psi(x+a)=J \Psi(x)$ where J is some function to be determined.
It follows that $\Psi(x+m a)$ should be related to $\Psi(x)$
as $\quad J^{m} \Psi(x)=\Psi(x+m a)$

Accordingly, for N unit cells in a 1D crystal, then
$\Psi(x+N a)$ would satisfy $J^{N} \Psi(x)=\Psi(x+N a)$

What are the implications for J?

Implication is that J must be one of N roots of unity, i.e.
$J=1=e^{2 \pi i\left(\frac{m}{N}\right)} ; 1 \leq \mathrm{m} \leq \mathrm{N}$
where

$$
e^{2 \pi i\left(\frac{m}{N}\right)}=\cos \left[2 \pi\left(\frac{m}{N}\right)\right]+i \sin \left[2 \pi\left(\frac{m}{N}\right)\right]
$$

The Bloch form

These translational requirements for Ψ can be met if we write

$$
\Psi(x)=u_{m}(x) e^{2 \pi i \frac{m}{N a} x}
$$

provided $u_{m}(x)$ has same periodicity as $U(x)$.

By specifying m, we specify how many complete
cycles the exponential completes in a distance L, since for a given m,

$$
e^{2 \pi i \frac{m}{N a} x}
$$

oscillates through m complete cycles as x goes from 0 to Na .

Writing $\mathrm{K}=\frac{2 \pi \mathrm{~m}}{\mathrm{Na}}$, we then have $\Psi(x)=u_{K}(x) e^{i K x}$.

A few consequences

The effect of a translation:

$$
\Psi(x+m a)=e^{i K a} \Psi(x) \text { with } K=\frac{2 \pi m}{N a}
$$

Since $\Psi(x)=u_{K}(x) e^{i K x}, \Psi(0)=u_{K}(0) \quad$ (remember this!)

Another way of saying the same thing

If we assume the solutions are of the form $\Psi(x)=u_{K}(x) e^{i K x}$ AND we require that $\Psi(x+L)=u_{K}(x+L) e^{i K(x+L)}=\Psi(x)$
(i.e., wavefunction solutions repeat after $\mathrm{L}=\mathrm{Na}$), then it follows that
(i) $u_{K}(x)=u_{K}(x+L)$, and
(ii) $e^{i K L}=1$

When does $e^{i K L}=1$?
only when $K L=2 \pi m$; m=integer

$$
K=2 \pi \frac{m}{L}=\frac{2 \pi}{a} \frac{m}{N}
$$

Either argment implies that if we choose to write

$$
K \text { as } \frac{2 \pi m}{N a} \text { or } \frac{2 \pi m}{L} ; \quad m=1,2, \ldots . N
$$

then we can write

$$
\Psi(x)=u_{K}(x) e^{i K x}
$$

and Bloch's theorem will be explicitly satisfied.
The bottom line is that K now has DISCRETE values

If K has DISCRETE values, then so will $E(K)$!

Apply these general ideas to Kronig-Penney delta function model

$\left[\frac{d \Psi_{1}}{d x}\right]_{x=\ell a-\varepsilon}=\left[\frac{d \Psi_{2}}{d x}\right]_{x^{\prime}=\ell a+\varepsilon}$$\quad \begin{aligned} & \quad \begin{array}{l}U_{o} \rightarrow \infty \\ \text { b is width of barrier (see earlier slide) } \\ \text { when } \mathrm{P} \rightarrow \infty\end{array}, \mathrm{K} \text { (free electron case) }\end{aligned}$

Plotting it out

> no real
> solutions

- E is no longer single valued with K
- Energy gaps appear - no solutions for real K
- E vs. K no longer free electron-like

Compare to free-electron case

Figure 3-27 A reduced-zone representation of energy versus wave-vector for the Kronig-Penney model when $\mathbf{P}=2$ (as was chosen in Figure 3-26). The corresponding curves for $\mathrm{P}=0$ (free electrons) are shown as dashed curves.

Check out the Kronig Penney applet at

 http://fermi.la.asu.edu/schmidt/applets/kp/plugkp.html

Applet notes

The real part of ψ is in red, and the imaginary part is in blue. The magnitude
is plotted in orange. The potential is shown in black.

The "Bloch Functions" plot shows the periodic Bloch functions. The color code is identical to the top plot.

To emphasize "atomic" like nature of
Bloch functions, choose energy near bottom of square well.

Finally, where are the electrons?

- position: $\Psi(x) \Psi^{*}(x) \Delta x$
- charge: $-e \psi(x) \psi^{\star}(x) \Delta x$
- energy: define density of states

Given $E(k)$, what is $n(E)$?
In 1D:

$$
\Delta n=\text { No. of states }=2 \times \frac{\Delta k}{\delta k}=2 \times\left(\frac{1}{2 \pi / L}\right) \frac{\Delta k}{\Delta E} \Delta E
$$

$$
=\frac{L}{\pi} \frac{\Delta k}{\Delta E} \Delta E
$$

$$
\lim _{\Delta E \rightarrow 0}\left(\frac{1}{L} \frac{\Delta n}{\Delta E}\right)=\frac{1}{L} \frac{d n}{d E} \equiv \rho(E)=\frac{1}{\pi} \frac{d k}{d E} \quad \text { Units: } \mathrm{m}^{-1} \mathrm{~J}^{-1}
$$

An example of a 3D band structure and DOS (PbSe)

For idealized isotropic systems

TABLE A.1. Properties of Coordinate and k-Space in Ome. Two and Three Dis

Coordinate Region	k-Space Linit Cell	Fermi Region	Value of k^{2}	Dimensions
Length L	$2 \pi / L$	$2 k_{\mathrm{F}}$	k_{X}^{2}	1
Area $A=L^{2}$	$(2 \pi / L)^{2}$	πk_{F}^{2}	$k_{X}^{2}+k_{Y}^{2}$	1
Volume $V=L^{3}$	$(2 \pi / L)^{3}$	$4 \pi k_{\mathrm{F}}^{3} / 3$	$k_{X}^{2}+k_{Y}^{2}+k_{Z}^{2}$	3

TABLE A.2. Number of electrons $N(E)$ and Density of States $D(E)=d N(E) / d E$ as Function of Energy \boldsymbol{E} for Electrons Delocalized in One, Two, and Three Spatial Dimensions, Where $A=L^{2}$ and $V=L^{3}$

Number of Electrons $N(E)$	Delocalization Dimensions
$N(E)=\frac{4 k_{F}}{2 \pi / L}=\frac{2 L}{\pi}\left[\frac{2 m}{\hbar^{2}}\right]^{1 / 2} E^{1 / 2}$	$D(E)=\frac{L}{\pi}\left[\frac{2 m}{\hbar^{2}}\right]^{1 / 2} E^{-1 / 2}$
$N(E)=\frac{2 \pi k_{F}^{2}}{2 \pi / L)^{2}}=\frac{A}{2 \pi}\left[\frac{2 m}{\hbar^{2}}\right] E$	$D(E)=\frac{A}{2 \pi}\left[\frac{2 m}{\hbar^{2}}\right]^{2}$
$N(E)=\frac{2\left(4 \pi k_{F}^{3} / 3\right)}{(2 \pi / L)^{3}}=\frac{V}{3 \pi}\left[\frac{2 m}{\hbar^{2}}\right]^{3 / 2} E^{3 / 2}$	$D(E)=\frac{V}{2 \pi^{2}}\left[\frac{2 m}{h^{2}}\right]^{3 / 2} E^{1 / 2}$

