
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
University of Illinois, Urbana-Champaign

1

ECE 498AL

Programming Massively Parallel Processors

Lecture 11: Floating-Point Considerations

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
University of Illinois, Urbana-Champaign

2

Objective

• To understand the fundamentals of floating-point
representation

• To know the IEEE-754 Floating Point Standard
• GeForce 8800 CUDA Floating-point speed, accuracy

and precision
– Deviations from IEEE-754
– Accuracy of device runtime functions
– -fastmath compiler option
– Future performance considerations

• To understand CUDA on Multi-cores

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
University of Illinois, Urbana-Champaign

3

GPU Floating Point Features
Cell SPEIBM AltivecSSEG80

12 bit12 bit12 bit23 bit
Reciprocal sqrt
estimate accuracy

No12 bitNo23 bit
log2(x) and 2^x
estimates accuracy

12 bit12 bit12 bit24 bit
Reciprocal estimate
accuracy

Software onlySoftware onlyHardwareSoftware onlyDivision

Software onlySoftware onlyHardwareSoftware onlySquare root

SomeYesYesNoFlags

No, infinityYesYes
Yes, only clamps to
max norm

Overflow and Infinity
support

NoYesYesYesNaN support

Flush to zero
Supported,
1000’s of cycles

Supported,
1000’s of cycles

Flush to zeroDenormal handling

Round to
zero/truncate only

Round to nearest only
All 4 IEEE, round to
nearest, zero, inf, -inf

Round to nearest and
round to zero

Rounding modes for
FADD and FMUL

IEEE 754IEEE 754IEEE 754IEEE 754Precision

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
University of Illinois, Urbana-Champaign

4

What is IEEE floating-point format?

• A floating point binary number consists of three parts:
– sign (S), exponent (E), and mantissa (M).

– Each (S, E, M) pattern uniquely identifies a floating point number.

• For each bit pattern, its IEEE floating-point value is derived as:

– value = (-1)S * M * {2E}, where 1.0 ≤ M < 10.0B

• The interpretation of S is simple: S=0 results in a positive
number and S=1 a negative number.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
University of Illinois, Urbana-Champaign

5

Normalized Representation

• Specifying that 1.0B ≤ M < 10.0B makes the mantissa
value for each floating point number unique.
– For example, the only one mantissa value allowed for 0.5D

is M =1.0
• 0.5D = 1.0B * 2-1

– Neither 10.0B * 2 -2 nor 0.1B * 2 0 qualifies

• Because all mantissa values are of the form 1.XX…,
one can omit the “1.” part in the representation.
– The mantissa value of 0.5D in a 2-bit mantissa is 00, which

is derived by omitting “1.” from 1.00.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
University of Illinois, Urbana-Champaign

6

Exponent Representation

• In an n-bits exponent
representation, 2n-1-1 is
added to its 2's complement
representation to form its
excess representation.
– See Table for a 3-bit exponent

representation

• A simple unsigned integer
comparator can be used to
compare the magnitude of
two FP numbers

• Symmetric range for +/-
exponents (111 reserved) 010-1111

001-2110

000-3101

111(reserved
pattern)

100

1103011

1012010

1001001

0110000

Excess-3Actual decimal2’s complement

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
University of Illinois, Urbana-Champaign

7

A simple, hypothetical 5-bit FP format

• Assume 1-bit S, 2-bit E, and
2-bit M
– 0.5D = 1.00B * 2-1

– 0.5D = 0 00 00, where S = 0,
E = 00, and M = (1.)00

00-111

11(reserved
pattern)

10

10101

01000

Excess-1Actual decimal2’s complement

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
University of Illinois, Urbana-Champaign

8

Representable Numbers

• The representable numbers
of a given format is the set
of all numbers that can be
exactly represented in the
format.

• See Table for representable
numbers of an unsigned 3-
bit integer format

7111

6110

5101

4100

3011

2010

1001

0000

0 71 42 3 5 6-1 98

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
University of Illinois, Urbana-Champaign

9

Representable Numbers of a 5-bit
Hypothetical IEEE Format

0

Reserved pattern11

-(21+3*2-1)21+3*2-1-(21+3*2-1)21+3*2-1-(21+3*2-1)21+3*2-111

-(21+2*2-1)21+2*2-1-(21+2*2-1)21+2*2-1-(21+2*2-1)21+2*2-110

-(21+1*2-1)21+1*2-1-(21+1*2-1)21+1*2-1-(21+1*2-1)21+1*2-101

-(21)21-(21)21-(21)210010

-(20+3*2-2)20+3*2-2-(20+3*2-2)20+3*2-2-(20+3*2-2)20+3*2-211

-(20+2*2-2)20+2*2-2-(20+2*2-2)20+2*2-2-(20+2*2-2)20+2*2-210

-(20+1*2-2)20+1*2-2-(20+1*2-2)20+1*2-2-(20+1*2-2)20+1*2-201

-(20)20-(20)20-(20)200001

-3*2-23*2-200-(2-1+3*2-3)2-1+3*2-311

-2*2-22*2-200-(2-1+2*2-3)2-1+2*2-310

-1*2-21*2-200-(2-1+1*2-3)2-1+1*2-301

0000-(2-1)2-10000

S=1S=0S=1S=0S=1S=0ME

Gradual underflowAbrupt underflowNo-zero

Cannot represent
Zero!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
University of Illinois, Urbana-Champaign

10

Flush to Zero

• Treat all bit patterns with E=0 as 0.0
– This takes away several representable numbers near zero

and lump them all into 0.0

– For a representation with large M, a large number of
representable numbers numbers will be removed.0

1 2 3 40

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
University of Illinois, Urbana-Champaign

11

Flush to Zero

0

Reserved pattern11

-(21+3*2-1)21+3*2-1-(21+3*2-1)21+3*2-1-(21+3*2-1)21+3*2-111

-(21+2*2-1)21+2*2-1-(21+2*2-1)21+2*2-1-(21+2*2-1)21+2*2-110

-(21+1*2-1)21+1*2-1-(21+1*2-1)21+1*2-1-(21+1*2-1)21+1*2-101

-(21)21-(21)21-(21)210010

-(20+3*2-2)20+3*2-2-(20+3*2-2)20+3*2-2-(20+3*2-2)20+3*2-211

-(20+2*2-2)20+2*2-2-(20+2*2-2)20+2*2-2-(20+2*2-2)20+2*2-210

-(20+1*2-2)20+1*2-2-(20+1*2-2)20+1*2-2-(20+1*2-2)20+1*2-201

-(20)20-(20)20-(20)200001

-3*2-23*2-200-(2-1+3*2-3)2-1+3*2-311

-2*2-22*2-200-(2-1+2*2-3)2-1+2*2-310

-1*2-21*2-200-(2-1+1*2-3)2-1+1*2-301

0000-(2-1)2-10000

S=1S=0S=1S=0S=1S=0ME

DenormalizedFlush to ZeroNo-zero

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
University of Illinois, Urbana-Champaign

12

Denormalized Numbers

• The actual method adopted by the IEEE standard is
called denromalized numbers or gradual underflow.
– The method relaxes the normalization requirement for

numbers very close to 0.

– whenever E=0, the mantissa is no longer assumed to be of
the form 1.XX. Rather, it is assumed to be 0.XX. In general,
if the n-bit exponent is 0, the value is

• 0.M * 2 - 2 ^(n-1) + 2

0 1 2 3

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
University of Illinois, Urbana-Champaign

13

Denormalization

0

Reserved pattern11

-(21+3*2-1)21+3*2-1-(21+3*2-1)21+3*2-1-(21+3*2-1)21+3*2-111

-(21+2*2-1)21+2*2-1-(21+2*2-1)21+2*2-1-(21+2*2-1)21+2*2-110

-(21+1*2-1)21+1*2-1-(21+1*2-1)21+1*2-1-(21+1*2-1)21+1*2-101

-(21)21-(21)21-(21)210010

-(20+3*2-2)20+3*2-2-(20+3*2-2)20+3*2-2-(20+3*2-2)20+3*2-211

-(20+2*2-2)20+2*2-2-(20+2*2-2)20+2*2-2-(20+2*2-2)20+2*2-210

-(20+1*2-2)20+1*2-2-(20+1*2-2)20+1*2-2-(20+1*2-2)20+1*2-201

-(20)20-(20)20-(20)200001

-3*2-23*2-200-(2-1+3*2-3)2-1+3*2-311

-2*2-22*2-200-(2-1+2*2-3)2-1+2*2-310

-1*2-21*2-200-(2-1+1*2-3)2-1+1*2-301

0000-(2-1)2-10000

S=1S=0S=1S=0S=1S=0ME

DenormalizedFlush to ZeroNo-zero

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
University of Illinois, Urbana-Champaign

14

Arithmetic Instruction Throughput

• int and float add, shift, min, max and float mul, mad: 4 cycles
per warp
– int multiply (*) is by default 32-bit

• requires multiple cycles / warp

– Use __mul24() / __umul24() intrinsics for 4-cycle 24-bit int multiply

• Integer divide and modulo are expensive
– Compiler will convert literal power-of-2 divides to shifts

– Be explicit in cases where compiler can’t tell that divisor is a power
of 2!

– Useful trick: foo % n == foo & (n-1) if n is a power of 2

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
University of Illinois, Urbana-Champaign

15

Arithmetic Instruction Throughput

• Reciprocal, reciprocal square root, sin/cos, log, exp:
16 cycles per warp
– These are the versions prefixed with “__”

– Examples:__rcp(), __sin(), __exp()

• Other functions are combinations of the above
– y / x == rcp(x) * y == 20 cycles per warp

– sqrt(x) == rcp(rsqrt(x)) == 32 cycles per warp

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
University of Illinois, Urbana-Champaign

16

Runtime Math Library

• There are two types of runtime math operations
– __func(): direct mapping to hardware ISA

• Fast but low accuracy (see prog. guide for details)

• Examples: __sin(x), __exp(x), __pow(x,y)

– func() : compile to multiple instructions
• Slower but higher accuracy (5 ulp, units in the least place, or less)

• Examples: sin(x), exp(x), pow(x,y)

• The -use_fast_math compiler option forces every
func() to compile to __func()

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
University of Illinois, Urbana-Champaign

17

Make your program float-safe!

• Future hardware will have double precision support
– G80 is single-precision only
– Double precision will have additional performance cost
– Careless use of double or undeclared types may run more slowly on

G80+

• Important to be float-safe (be explicit whenever you want
single precision) to avoid using double precision where it is
not needed
– Add ‘f’ specifier on float literals:

• foo = bar * 0.123; // double assumed
• foo = bar * 0.123f; // float explicit

– Use float version of standard library functions
• foo = sin(bar); // double assumed
• foo = sinf(bar); // single precision explicit

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
University of Illinois, Urbana-Champaign

18

Deviations from IEEE-754

• Addition and Multiplication are IEEE 754 compliant
– Maximum 0.5 ulp (units in the least place) error

• However, often combined into multiply-add (FMAD)
– Intermediate result is truncated

• Division is non-compliant (2 ulp)

• Not all rounding modes are supported

• Denormalized numbers are not supported

• No mechanism to detect floating-point exceptions

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
University of Illinois, Urbana-Champaign

19

GPU Floating Point Features
Cell SPEIBM AltivecSSEG80

12 bit12 bit12 bit23 bit
Reciprocal sqrt
estimate accuracy

No12 bitNo23 bit
log2(x) and 2^x
estimates accuracy

12 bit12 bit12 bit24 bit
Reciprocal estimate
accuracy

Software onlySoftware onlyHardwareSoftware onlyDivision

Software onlySoftware onlyHardwareSoftware onlySquare root

SomeYesYesNoFlags

No, infinityYesYes
Yes, only clamps to
max norm

Overflow and Infinity
support

NoYesYesYesNaN support

Flush to zero
Supported,
1000’s of cycles

Supported,
1000’s of cycles

Flush to zeroDenormal handling

Round to
zero/truncate only

Round to nearest only
All 4 IEEE, round to
nearest, zero, inf, -inf

Round to nearest and
round to zero

Rounding modes for
FADD and FMUL

IEEE 754IEEE 754IEEE 754IEEE 754Precision

