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ECE 498AL

Programming Massively Parallel Processors

Lecture 11: Floating-Point Considerations
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Objective

• To understand the fundamentals of floating-point 
representation

• To know the IEEE-754 Floating Point Standard
• GeForce 8800 CUDA Floating-point speed, accuracy 

and precision
– Deviations from IEEE-754
– Accuracy of device runtime functions 
– -fastmath compiler option
– Future performance considerations

• To understand CUDA on Multi-cores
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GPU Floating Point Features
Cell SPEIBM AltivecSSEG80

12 bit12 bit12 bit23 bit
Reciprocal sqrt
estimate accuracy

No12 bitNo23 bit
log2(x) and 2^x 
estimates accuracy

12 bit12 bit12 bit24 bit
Reciprocal estimate 
accuracy

Software onlySoftware onlyHardwareSoftware onlyDivision  

Software onlySoftware onlyHardwareSoftware onlySquare root  

SomeYesYesNoFlags 

No, infinityYesYes
Yes, only clamps to 
max norm

Overflow and Infinity 
support

NoYesYesYesNaN support

Flush to zero
Supported,
1000’s of cycles

Supported,
1000’s of cycles

Flush to zeroDenormal handling

Round to 
zero/truncate only

Round to nearest only
All 4 IEEE, round to 
nearest, zero, inf, -inf

Round to nearest and 
round to zero

Rounding modes for 
FADD and FMUL

IEEE 754IEEE 754IEEE 754IEEE 754Precision
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What is IEEE floating-point format?

• A floating point binary number consists of three parts: 
– sign (S), exponent (E), and mantissa (M). 

– Each (S, E, M) pattern uniquely identifies a floating point number. 

• For each bit pattern, its IEEE floating-point value is derived as:

– value = (-1)S * M * {2E}, where 1.0 ≤ M < 10.0B

• The interpretation of S is simple: S=0 results in a positive 
number and S=1 a negative number. 
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Normalized Representation

• Specifying that 1.0B ≤ M < 10.0B makes the mantissa 
value for each floating point number unique. 
– For example, the only one mantissa value allowed for 0.5D

is M =1.0
• 0.5D = 1.0B * 2-1

– Neither 10.0B * 2 -2  nor  0.1B * 2 0  qualifies

• Because all mantissa values are of the form 1.XX…, 
one can omit the “1.” part in the representation.
– The mantissa value of 0.5D in a 2-bit mantissa is 00, which 

is derived by omitting “1.” from 1.00.
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Exponent Representation

• In an n-bits exponent 
representation, 2n-1-1 is 
added to its 2's complement 
representation to form its 
excess representation. 
– See Table for a 3-bit exponent 

representation

• A simple unsigned integer 
comparator can be used to 
compare the magnitude of 
two FP numbers

• Symmetric range for +/-
exponents (111 reserved) 010-1111

001-2110

000-3101

111(reserved 
pattern)

100

1103011

1012010

1001001

0110000

Excess-3Actual decimal2’s complement
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A simple, hypothetical 5-bit FP format

• Assume 1-bit S, 2-bit E, and 
2-bit M
– 0.5D = 1.00B * 2-1

– 0.5D = 0 00 00, where S = 0, 
E = 00, and M = (1.)00 

00-111

11(reserved 
pattern)

10

10101

01000

Excess-1Actual decimal2’s complement
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Representable Numbers

• The representable numbers 
of a given format is the set 
of all numbers that can be 
exactly represented in the 
format. 

• See Table for representable
numbers of an unsigned 3-
bit integer format

7111

6110

5101

4100

3011

2010

1001

0000

0 71 42 3 5 6-1 98
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Representable Numbers of a 5-bit 
Hypothetical IEEE Format

0

Reserved pattern11

-(21+3*2-1)21+3*2-1-(21+3*2-1)21+3*2-1-(21+3*2-1)21+3*2-111

-(21+2*2-1)21+2*2-1-(21+2*2-1)21+2*2-1-(21+2*2-1)21+2*2-110

-(21+1*2-1)21+1*2-1-(21+1*2-1)21+1*2-1-(21+1*2-1)21+1*2-101

-(21)21-(21)21-(21)210010

-(20+3*2-2)20+3*2-2-(20+3*2-2)20+3*2-2-(20+3*2-2)20+3*2-211

-(20+2*2-2)20+2*2-2-(20+2*2-2)20+2*2-2-(20+2*2-2)20+2*2-210

-(20+1*2-2)20+1*2-2-(20+1*2-2)20+1*2-2-(20+1*2-2)20+1*2-201

-(20)20-(20)20-(20)200001

-3*2-23*2-200-(2-1+3*2-3)2-1+3*2-311

-2*2-22*2-200-(2-1+2*2-3)2-1+2*2-310

-1*2-21*2-200-(2-1+1*2-3)2-1+1*2-301

0000-(2-1)2-10000

S=1S=0S=1S=0S=1S=0ME

Gradual underflowAbrupt underflowNo-zero

Cannot represent 
Zero!
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Flush to Zero

• Treat all bit patterns with E=0 as 0.0
– This takes away several representable numbers near zero 

and lump them all into 0.0

– For a representation with large M, a large number of 
representable numbers numbers will be removed.0

1 2 3 40
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Flush to Zero

0

Reserved pattern11

-(21+3*2-1)21+3*2-1-(21+3*2-1)21+3*2-1-(21+3*2-1)21+3*2-111

-(21+2*2-1)21+2*2-1-(21+2*2-1)21+2*2-1-(21+2*2-1)21+2*2-110

-(21+1*2-1)21+1*2-1-(21+1*2-1)21+1*2-1-(21+1*2-1)21+1*2-101

-(21)21-(21)21-(21)210010

-(20+3*2-2)20+3*2-2-(20+3*2-2)20+3*2-2-(20+3*2-2)20+3*2-211

-(20+2*2-2)20+2*2-2-(20+2*2-2)20+2*2-2-(20+2*2-2)20+2*2-210

-(20+1*2-2)20+1*2-2-(20+1*2-2)20+1*2-2-(20+1*2-2)20+1*2-201

-(20)20-(20)20-(20)200001

-3*2-23*2-200-(2-1+3*2-3)2-1+3*2-311

-2*2-22*2-200-(2-1+2*2-3)2-1+2*2-310

-1*2-21*2-200-(2-1+1*2-3)2-1+1*2-301

0000-(2-1)2-10000

S=1S=0S=1S=0S=1S=0ME

DenormalizedFlush to ZeroNo-zero
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Denormalized Numbers

• The actual method adopted by the IEEE standard is 
called denromalized numbers or gradual underflow.
– The method relaxes the normalization requirement for 

numbers very close to 0. 

– whenever E=0, the mantissa is no longer assumed to be of 
the form 1.XX. Rather, it is assumed to be 0.XX. In general, 
if the n-bit exponent is 0, the value is

• 0.M * 2 - 2 ^(n-1) + 2

0 1 2 3
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Denormalization

0

Reserved pattern11

-(21+3*2-1)21+3*2-1-(21+3*2-1)21+3*2-1-(21+3*2-1)21+3*2-111

-(21+2*2-1)21+2*2-1-(21+2*2-1)21+2*2-1-(21+2*2-1)21+2*2-110

-(21+1*2-1)21+1*2-1-(21+1*2-1)21+1*2-1-(21+1*2-1)21+1*2-101

-(21)21-(21)21-(21)210010

-(20+3*2-2)20+3*2-2-(20+3*2-2)20+3*2-2-(20+3*2-2)20+3*2-211

-(20+2*2-2)20+2*2-2-(20+2*2-2)20+2*2-2-(20+2*2-2)20+2*2-210

-(20+1*2-2)20+1*2-2-(20+1*2-2)20+1*2-2-(20+1*2-2)20+1*2-201

-(20)20-(20)20-(20)200001

-3*2-23*2-200-(2-1+3*2-3)2-1+3*2-311

-2*2-22*2-200-(2-1+2*2-3)2-1+2*2-310

-1*2-21*2-200-(2-1+1*2-3)2-1+1*2-301

0000-(2-1)2-10000

S=1S=0S=1S=0S=1S=0ME

DenormalizedFlush to ZeroNo-zero
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Arithmetic Instruction Throughput

• int and float add, shift, min, max and float mul, mad: 4 cycles 
per warp
– int multiply (*) is by default 32-bit

• requires multiple cycles / warp

– Use __mul24() / __umul24() intrinsics for 4-cycle 24-bit int multiply

• Integer divide and modulo are expensive
– Compiler will convert literal power-of-2 divides to shifts

– Be explicit in cases where compiler can’t tell that divisor is a power 
of 2!

– Useful trick: foo % n == foo & (n-1) if n is a power of 2
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Arithmetic Instruction Throughput

• Reciprocal, reciprocal square root, sin/cos, log, exp: 
16 cycles per warp
– These are the versions prefixed with “__”

– Examples:__rcp(), __sin(), __exp()

• Other functions are combinations of the above
– y / x == rcp(x) * y == 20 cycles per warp

– sqrt(x) == rcp(rsqrt(x)) == 32 cycles per warp
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Runtime Math Library

• There are two types of runtime math operations
– __func(): direct mapping to hardware ISA

• Fast but low accuracy (see prog. guide for details)

• Examples: __sin(x), __exp(x), __pow(x,y)

– func() : compile to multiple instructions
• Slower but higher accuracy (5 ulp, units in the least place, or less)

• Examples: sin(x), exp(x), pow(x,y)

• The -use_fast_math compiler option forces every 
func() to compile to __func()
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Make your program float-safe!

• Future hardware will have double precision support
– G80 is single-precision only
– Double precision will have additional performance cost
– Careless use of double or undeclared types may run more slowly on 

G80+

• Important to be float-safe (be explicit whenever you want 
single precision) to avoid using double precision where it is 
not needed
– Add ‘f’ specifier on float literals:

• foo = bar * 0.123; // double assumed 
• foo = bar * 0.123f; // float explicit

– Use float version of standard library functions
• foo = sin(bar); // double assumed 
• foo = sinf(bar); // single precision explicit
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Deviations from IEEE-754

• Addition and Multiplication are IEEE 754 compliant
– Maximum 0.5 ulp (units in the least place) error

• However, often combined into multiply-add (FMAD)
– Intermediate result is truncated

• Division is non-compliant (2 ulp)

• Not all rounding modes are supported

• Denormalized numbers are not supported

• No mechanism to detect floating-point exceptions
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GPU Floating Point Features
Cell SPEIBM AltivecSSEG80

12 bit12 bit12 bit23 bit
Reciprocal sqrt
estimate accuracy

No12 bitNo23 bit
log2(x) and 2^x 
estimates accuracy

12 bit12 bit12 bit24 bit
Reciprocal estimate 
accuracy

Software onlySoftware onlyHardwareSoftware onlyDivision  

Software onlySoftware onlyHardwareSoftware onlySquare root  

SomeYesYesNoFlags 

No, infinityYesYes
Yes, only clamps to 
max norm

Overflow and Infinity 
support

NoYesYesYesNaN support

Flush to zero
Supported,
1000’s of cycles

Supported,
1000’s of cycles

Flush to zeroDenormal handling

Round to 
zero/truncate only

Round to nearest only
All 4 IEEE, round to 
nearest, zero, inf, -inf

Round to nearest and 
round to zero

Rounding modes for 
FADD and FMUL

IEEE 754IEEE 754IEEE 754IEEE 754Precision


