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CUDA Device Memory Space: Review

• Each thread can:
– R/W per-thread registers

– R/W per-thread local memory

– R/W per-block shared memory

– R/W per-grid global memory

– Read only per-grid constant 
memory

– Read only per-grid texture memory

(Device) Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Host
• The host can R/W 

global, constant, and 
texture memories



© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

3

Parallel Memory Sharing
• Local Memory:   per-thread

– Private per thread
– Auto variables, register spill

• Shared Memory: per-Block
– Shared by threads of the same 

block
– Inter-thread communication

• Global Memory:   per-application
– Shared by all threads
– Inter-Grid communication
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SM Memory Architecture

• Threads in a block share data & 
results
– In Memory and Shared Memory

– Synchronize at barrier instruction

• Per-Block Shared Memory 
Allocation
– Keeps data close to processor

– Minimize trips to global Memory

– Shared Memory is dynamically 
allocated to blocks, one of the 
limiting resources
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SM Register File

• Register File (RF)
– 32 KB (8K entries) for each SM in G80

• TEX pipe can also read/write RF
– 2 SMs share 1 TEX

• Load/Store pipe can also read/write RF
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Programmer View of Register File

• There are 8192 registers in 
each SM in G80
– This is an implementation 

decision, not part of CUDA

– Registers are dynamically 
partitioned across all blocks 
assigned to the SM

– Once assigned to a block, the 
register is NOT accessible by 
threads in other blocks

– Each thread in the same block 
only access registers assigned 
to itself

4 blocks 3 blocks
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Matrix Multiplication Example

• If each Block has 16X16 threads and each thread uses 
10 registers, how many thread can run on each SM?
– Each block requires 10*256 = 2560 registers
– 8192 = 3 * 2560 + change
– So, three blocks can run on an SM as far as registers are 

concerned

• How about if each thread increases the use of registers 
by 1?
– Each  Block now requires 11*256 = 2816 registers
– 8192 < 2816 *3
– Only two Blocks can run on an SM, 1/3 reduction of 

parallelism!!!
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More on Dynamic Partitioning

• Dynamic partitioning gives more flexibility to 
compilers/programmers
– One can run a smaller number of threads that require many 

registers each or a large number of threads that require few 
registers each 

• This allows for finer grain threading than traditional CPU threading 
models.

– The compiler can tradeoff between instruction-level 
parallelism and thread level parallelism
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ILP vs. TLP Example

• Assume that a kernel has 256-thread Blocks, 4 independent 
instructions for each global memory load in the thread 
program, and each thread uses 10 registers, global laods have 
200 cycles 
– 3 Blocks can run on each SM

• If a compiler can use one more register to change the 
dependence pattern so that 8 independent instructions exist for 
each global memory load
– Only two can run on each SM

– However, one only needs 200/(8*4) = 7 Warps to tolerate the memory 
latency

– Two blocks have 16 Warps. The performance can be actually higher!
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Memory Coalescing

• When accessing global memory, peak performance 
utilization occurs when all threads in a half warp 
access continuous memory locations.
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Constants

• Immediate address constants

• Indexed address constants

• Constants stored in DRAM, and cached on chip
– L1 per SM

• A constant value can be broadcast to all threads 
in a Warp
– Extremely efficient way of accessing a value that is 

common for all threads in a block!
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Shared Memory

• Each SM has 16 KB of Shared Memory
– 16 banks of 32bit words

• CUDA uses Shared Memory as shared 
storage visible to all threads in a thread 
block
– read and write access

• Not used explicitly for pixel shader
programs
– we dislike pixels talking to each other 
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Parallel Memory Architecture

• In a parallel machine, many threads access memory
– Therefore, memory is divided into banks

– Essential to achieve high bandwidth

• Each bank can service one address per cycle
– A memory can service as many simultaneous 

accesses as it has banks

• Multiple simultaneous accesses to a bank
result in a bank conflict 
– Conflicting accesses are serialized
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Bank Addressing Examples

• No Bank Conflicts
– Linear addressing 

stride == 1

• No Bank Conflicts
– Random 1:1 Permutation
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Bank Addressing Examples

• 2-way Bank Conflicts
– Linear addressing 

stride == 2

• 8-way Bank Conflicts
– Linear addressing 

stride == 8
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How addresses map to banks on G80

• Each bank has a bandwidth of 32 bits per clock cycle

• Successive 32-bit words are assigned to successive 
banks

• G80 has 16 banks
– So bank = address % 16

– Same as the size of a half-warp
• No bank conflicts between different half-warps, only within a 

single half-warp
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Shared memory bank conflicts

• Shared memory is as fast as registers if there are no bank 
conflicts

• The fast case:
– If all threads of a half-warp access different banks, there is no bank 

conflict

– If all threads of a half-warp access the identical address, there is no 
bank conflict (broadcast)

• The slow case:
– Bank Conflict: multiple threads in the same half-warp access the same 

bank

– Must serialize the accesses

– Cost = max # of simultaneous accesses to a single bank
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Linear Addressing
• Given:

__shared__ float shared[256];

float foo = 

shared[baseIndex + s * 
threadIdx.x];

• This is only bank-conflict-free if s 
shares no common factors with the 
number of banks 
– 16 on G80, so s must be odd
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