
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

1

ECE 498AL

Lectures 9:
Memory Hardware in G80

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

2

CUDA Device Memory Space: Review

• Each thread can:
– R/W per-thread registers

– R/W per-thread local memory

– R/W per-block shared memory

– R/W per-grid global memory

– Read only per-grid constant
memory

– Read only per-grid texture memory

(Device) Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Host
• The host can R/W

global, constant, and
texture memories

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

3

Parallel Memory Sharing
• Local Memory: per-thread

– Private per thread
– Auto variables, register spill

• Shared Memory: per-Block
– Shared by threads of the same

block
– Inter-thread communication

• Global Memory: per-application
– Shared by all threads
– Inter-Grid communication

Thread

Local Memory

Grid 0

. . .

Global
Memory

. . .

Grid 1
Sequential
Grids
in Time

Block

Shared
Memory

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

4

SM Memory Architecture

• Threads in a block share data &
results
– In Memory and Shared Memory

– Synchronize at barrier instruction

• Per-Block Shared Memory
Allocation
– Keeps data close to processor

– Minimize trips to global Memory

– Shared Memory is dynamically
allocated to blocks, one of the
limiting resources

t0 t1 t2 … tm

Blocks

Texture L1

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

TF

L2

Memory

t0 t1 t2 … tm

Blocks

SM 1SM 0

Courtesy:
John Nicols, NVIDIA

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

5

SM Register File

• Register File (RF)
– 32 KB (8K entries) for each SM in G80

• TEX pipe can also read/write RF
– 2 SMs share 1 TEX

• Load/Store pipe can also read/write RF

I$
L1

Multithreaded
Instruction Buffer

R
F

C$
L1

Shared
Mem

Operand Select

MAD SFU

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

6

Programmer View of Register File

• There are 8192 registers in
each SM in G80
– This is an implementation

decision, not part of CUDA

– Registers are dynamically
partitioned across all blocks
assigned to the SM

– Once assigned to a block, the
register is NOT accessible by
threads in other blocks

– Each thread in the same block
only access registers assigned
to itself

4 blocks 3 blocks

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

7

Matrix Multiplication Example

• If each Block has 16X16 threads and each thread uses
10 registers, how many thread can run on each SM?
– Each block requires 10*256 = 2560 registers
– 8192 = 3 * 2560 + change
– So, three blocks can run on an SM as far as registers are

concerned

• How about if each thread increases the use of registers
by 1?
– Each Block now requires 11*256 = 2816 registers
– 8192 < 2816 *3
– Only two Blocks can run on an SM, 1/3 reduction of

parallelism!!!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

8

More on Dynamic Partitioning

• Dynamic partitioning gives more flexibility to
compilers/programmers
– One can run a smaller number of threads that require many

registers each or a large number of threads that require few
registers each

• This allows for finer grain threading than traditional CPU threading
models.

– The compiler can tradeoff between instruction-level
parallelism and thread level parallelism

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

9

ILP vs. TLP Example

• Assume that a kernel has 256-thread Blocks, 4 independent
instructions for each global memory load in the thread
program, and each thread uses 10 registers, global laods have
200 cycles
– 3 Blocks can run on each SM

• If a compiler can use one more register to change the
dependence pattern so that 8 independent instructions exist for
each global memory load
– Only two can run on each SM

– However, one only needs 200/(8*4) = 7 Warps to tolerate the memory
latency

– Two blocks have 16 Warps. The performance can be actually higher!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

10

M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

M1,3M0,3 M2,3 M3,3

M

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

11

Memory Coalescing

• When accessing global memory, peak performance
utilization occurs when all threads in a half warp
access continuous memory locations.

Md Nd

W
ID

T
H

WIDTH

Thread 1
Thread 2

Not coalesced coalesced

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

12

M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

M1,3M0,3 M2,3 M3,3

M

T1 T2 T3 T4

Time Period 1

T1 T2 T3 T4

Time Period 2

Access
direction in
Kernel code

…

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

13

M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

M1,3M0,3 M2,3 M3,3

M

T1 T2 T3 T4

Time Period 1

T1 T2 T3 T4

Time Period 2

Access
direction in
Kernel code

…

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

14

Constants

• Immediate address constants

• Indexed address constants

• Constants stored in DRAM, and cached on chip
– L1 per SM

• A constant value can be broadcast to all threads
in a Warp
– Extremely efficient way of accessing a value that is

common for all threads in a block!

I$
L1

Multithreaded
Instruction Buffer

R
F

C$
L1

Shared
Mem

Operand Select

MAD SFU

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

15

Shared Memory

• Each SM has 16 KB of Shared Memory
– 16 banks of 32bit words

• CUDA uses Shared Memory as shared
storage visible to all threads in a thread
block
– read and write access

• Not used explicitly for pixel shader
programs
– we dislike pixels talking to each other 

I$
L1

Multithreaded
Instruction Buffer

R
F

C$
L1

Shared
Mem

Operand Select

MAD SFU

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

16

Parallel Memory Architecture

• In a parallel machine, many threads access memory
– Therefore, memory is divided into banks

– Essential to achieve high bandwidth

• Each bank can service one address per cycle
– A memory can service as many simultaneous

accesses as it has banks

• Multiple simultaneous accesses to a bank
result in a bank conflict
– Conflicting accesses are serialized

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

17

Bank Addressing Examples

• No Bank Conflicts
– Linear addressing

stride == 1

• No Bank Conflicts
– Random 1:1 Permutation

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

18

Bank Addressing Examples

• 2-way Bank Conflicts
– Linear addressing

stride == 2

• 8-way Bank Conflicts
– Linear addressing

stride == 8

Thread 11
Thread 10
Thread 9
Thread 8

Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2
Bank 1
Bank 0x8

x8

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

19

How addresses map to banks on G80

• Each bank has a bandwidth of 32 bits per clock cycle

• Successive 32-bit words are assigned to successive
banks

• G80 has 16 banks
– So bank = address % 16

– Same as the size of a half-warp
• No bank conflicts between different half-warps, only within a

single half-warp

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

20

Shared memory bank conflicts

• Shared memory is as fast as registers if there are no bank
conflicts

• The fast case:
– If all threads of a half-warp access different banks, there is no bank

conflict

– If all threads of a half-warp access the identical address, there is no
bank conflict (broadcast)

• The slow case:
– Bank Conflict: multiple threads in the same half-warp access the same

bank

– Must serialize the accesses

– Cost = max # of simultaneous accesses to a single bank

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

21

Linear Addressing
• Given:

__shared__ float shared[256];

float foo =

shared[baseIndex + s *
threadIdx.x];

• This is only bank-conflict-free if s
shares no common factors with the
number of banks
– 16 on G80, so s must be odd

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

Thread 15

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

Thread 15

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

s=3

s=1

