
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

1

ECE 498AL

Lectures 8:
Threading Hardware in G80

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

2

Single-Program Multiple-Data (SPMD)
• CUDA integrated CPU + GPU application C

program
– Serial C code executes on CPU

– Parallel Kernel C code executes on GPU thread blocks

CPU Serial Code
Grid 0

. . .

. . .

GPU Parallel Kernel

KernelA<<< nBlk, nTid >>>(args);

Grid 1
CPU Serial Code

GPU Parallel Kernel

KernelB<<< nBlk, nTid >>>(args);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

3

Host

Kernel
1

Kernel
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(0, 1)

Block
(1, 1)

Grid 2

Courtesy: NDVIA

Block (1, 1)

Thread
(0,1,0)

Thread
(1,1,0)

Thread
(2,1,0)

Thread
(3,1,0)

Thread
(0,0,0)

Thread
(1,0,0)

Thread
(2,0,0)

Thread
(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

Grids and Blocks
• A kernel is executed as a grid

of thread blocks
– All threads share global memory

space

• A thread block is a batch of
threads that can cooperate with
each other by:
– Synchronizing their execution

using barrier
– Efficiently sharing data through

a low latency shared memory
– Two threads from two different

blocks cannot cooperate

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

4

CUDA Thread Block: Review

• Programmer declares (Thread) Block:
– Block size 1 to 512 concurrent threads
– Block shape 1D, 2D, or 3D
– Block dimensions in threads

• All threads in a Block execute the same
thread program

• Threads share data and synchronize while
doing their share of the work

• Threads have thread id numbers within
Block

• Thread program uses thread id to select
work and address shared data

CUDA Thread Block

Thread Id #:
0 1 2 3 … m

Thread program

Courtesy: John Nickolls, NVIDIA

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

5

GeForce-8 Series HW Overview

TPC TPC TPC TPC TPC TPC

TEX

SM

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Instruction Fetch/Dispatch

Instruction L1 Data L1

Texture Processor Cluster Streaming Multiprocessor

SM

Shared Memory

Streaming Processor Array

…

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

6

• SPA
– Streaming Processor Array (variable across GeForce 8-series, 8 in

GeForce8800)

• TPC
– Texture Processor Cluster (2 SM + TEX)

• SM
– Streaming Multiprocessor (8 SP)

– Multi-threaded processor core

– Fundamental processing unit for CUDA thread block

• SP
– Streaming Processor

– Scalar ALU for a single CUDA thread

CUDA Processor Terminology

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

7

Streaming Multiprocessor (SM)

• Streaming Multiprocessor (SM)
– 8 Streaming Processors (SP)

– 2 Super Function Units (SFU)

• Multi-threaded instruction dispatch
– 1 to 512 threads active

– Shared instruction fetch per 32 threads

– Cover latency of texture/memory loads

• 20+ GFLOPS

• 16 KB shared memory

• texture and global memory access
SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Instruction Fetch/Dispatch

Instruction L1 Data L1

Streaming Multiprocessor

Shared Memory

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

8

G80 Thread Computing Pipeline
• Processors execute computing threads

• Alternative operating mode specifically for computing

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Load/store Load/store Load/store Load/store Load/store

• The future of GPUs is programmable processing

• So – build the architecture around the processor

L2

FB

SP SP

L1

TF

T
h

re
a

d
 P

ro
c

es
s

o
r

Vtx Thread Issue

Setup / Rstr / ZCull

Geom Thread Issue Pixel Thread Issue

Input Assembler

Host

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

L2

FB

L2

FB

L2

FB

L2

FB

L2

FB

Generates Thread
grids based on

kernel calls

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

9

Thread Life Cycle in HW
• Grid is launched on the SPA
• Thread Blocks are serially

distributed to all the SM’s
– Potentially >1 Thread Block per

SM

• Each SM launches Warps of
Threads
– 2 levels of parallelism

• SM schedules and executes
Warps that are ready to run

• As Warps and Thread Blocks
complete, resources are freed
– SPA can distribute more Thread

Blocks

Host

Kernel
1

Kernel
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Grid 2

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

10

SM Executes Blocks

• Threads are assigned to SMs in
Block granularity
– Up to 8 Blocks to each SM as

resource allows

– SM in G80 can take up to 768 threads
• Could be 256 (threads/block) * 3

blocks

• Or 128 (threads/block) * 6 blocks,
etc.

• Threads run concurrently
– SM assigns/maintains thread id #s

– SM manages/schedules thread
execution

t0 t1 t2 … tm

Blocks

Texture L1

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

TF

L2

Memory

t0 t1 t2 … tm

Blocks

SM 1SM 0

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

11

Thread Scheduling/Execution

• Each Thread Blocks is divided in 32-
thread Warps
– This is an implementation decision, not

part of the CUDA programming model

• Warps are scheduling units in SM

• If 3 blocks are assigned to an SM and each
Block has 256 threads, how many Warps
are there in an SM?
– Each Block is divided into 256/32 = 8

Warps

– There are 8 * 3 = 24 Warps

– At any point in time, only one of the 24
Warps will be selected for instruction
fetch and execution.

…
t0 t1 t2 … t31

…

…
t0 t1 t2 … t31

…Block 1 Warps Block 2 Warps

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Instruction Fetch/Dispatch

Instruction L1 Data L1

Streaming Multiprocessor

Shared Memory

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

12

SM Warp Scheduling

• SM hardware implements zero-
overhead Warp scheduling
– Warps whose next instruction has its

operands ready for consumption are
eligible for execution

– Eligible Warps are selected for execution
on a prioritized scheduling policy

– All threads in a Warp execute the same
instruction when selected

• 4 clock cycles needed to dispatch the
same instruction for all threads in a
Warp in G80
– If one global memory access is needed

for every 4 instructions
– A minimal of 13 Warps are needed to

fully tolerate 200-cycle memory latency

warp 8 instruction 11

SM multithreaded
Warp scheduler

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

...

time

warp 3 instruction 96

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

13

SM Instruction Buffer – Warp Scheduling

• Fetch one warp instruction/cycle
– from instruction L1 cache

– into any instruction buffer slot

• Issue one “ready-to-go” warp instruction/cycle
– from any warp - instruction buffer slot

– operand scoreboarding used to prevent hazards

• Issue selection based on round-robin/age of
warp

• SM broadcasts the same instruction to 32
Threads of a Warp

I$
L1

Multithreaded
Instruction Buffer

R
F

C$
L1

Shared
Mem

Operand Select

MAD SFU

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

14

Scoreboarding

• All register operands of all instructions in the Instruction
Buffer are scoreboarded
– Instruction becomes ready after the needed values are deposited
– prevents hazards
– cleared instructions are eligible for issue

• Decoupled Memory/Processor pipelines
– any thread can continue to issue instructions until scoreboarding

prevents issue
– allows Memory/Processor ops to proceed in shadow of other waiting

Memory/Processor ops

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

15

Granularity Considerations

• For Matrix Multiplication, should I use 4X4, 8X8, 16X16 or 32X32 tiles?
– For 4X4, we have 16 threads per block, Since each SM can take up to 768 threads, the

thread capacity allows 48 blocks. However, each SM can only take up to 8 blocks, thus
there will be only 128 threads in each SM!

• There are 8 warps but each warp is only half full.

– For 8X8, we have 64 threads per Block. Since each SM can take up to 768 threads, it
could take up to 12 Blocks. However, each SM can only take up to 8 Blocks, only 512
threads will go into each SM!

• There are 16 warps available for scheduling in each SM
• Each warp spans four slices in the y dimension

– For 16X16, we have 256 threads per Block. Since each SM can take up to 768 threads, it
can take up to 3 Blocks and achieve full capacity unless other resource considerations
overrule.

• There are 24 warps available for scheduling in each SM
• Each warp spans two slices in the y dimension

– For 32X32, we have 1024 threads per Block. Not even one can fit into an SM!

