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outline of lecture 3

1) Basic concepts of percolative conduction

2) Non-ohmic conduction: cell-based percolation

3) Non-ohmic conduction: renormalization

4) Finite width transition: physics of striping

5) Conclusion
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basics: cluster-size and conduction
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finite sizes and end of Ohm’s law
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non-ohmic scaling by cell percolation
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finite size “percolation threshold”

Prob. of a filled row

Probability of not conducting 
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finite size “percolation threshold”
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conductance of the random resistor
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length dependence for 
small vs. large systems
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…. crooked paths for long conductors
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self-similarity

Invariant under magnification or scaling



renormalization of Ohama v. McCain
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At percolation threshold, the self-similar
pattern will not change on rescaling …

44 vs. 37
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renormalization and self-similarity …..

At p=pc, the islands sizes are self-similar

The probability of connection at smaller scale must 
be preserved for scale invariance to work. 

http://upload.wikimedia.org/wikipedia/commons/7/7b/Bond_percolation_p_51.png�
http://upload.wikimedia.org/wikipedia/commons/7/7b/Bond_percolation_p_51.png�
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1D percolation threshold ….

2  'p p=

0    1    1    1    0     0     1    1

0         1           0           1

2  0,1c c cp p p= ⇒ =

Either all are connected (pc=1) or all are broken (pc=0)

  p

At the threshold, scaling does not change p ….
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now 2D threshold …. 

2x2 cell …

… scaled up

The probability of connection at smaller scale must 
be preserved for scale invariance to work.

Rule: ability to connect from left to right

http://upload.wikimedia.org/wikipedia/commons/7/7b/Bond_percolation_p_51.png�
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percolation threshold ….
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percolation threshold ….
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New Rule: 1 M =1.75 O
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If weight for different bonds are different,  
the scaling will obviously proceed differently … 

44 vs. 37
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conductivity …. 
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conductivity …. 

2 1

1 1 1 1
5 4 4 3 2

1
3 2 2 3

1 1 1 1 3 1(1 ) 4 (1 ) 2 (1 )
2 2 2 2 5 3' 1  

1                                                                               6 (1 )  2 (1 )
2

s s

p p p p p p p
p

p p p p
σ σ

− − − −

−

       + + × − + + − + − +       
       =

 + − + × − 
 

11
2

−

 
 
 
       



23

conductivity …. 
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summary
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finite widths and end of Ohm’s law
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finite thickness effect (1D to 2D transition)
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finite thickness effect (1D to 2D transition)
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shift in percolation threshold

ppC

0

   σ
σ i=1i=3

Striping allows shifting of percolation threshold

2D

i=1

i=2



30

conductance of finite stripes
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conductance of finite size stripes
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conclusions

Non-ohmic conduction is a feature of percolative 
transport. It arises from “length-dependent” effective 
width in which additional islands can join the percolation 
network as the path length is shortened.

The nonlinearly in the short and the long-channel limits 
are distinct. Given that many problems in device physics 
involve short channel transistors, one should be careful in 
using the appropriate formula. 

Quasi-2D percolating network allows tailoring of 
percolation threshold without affecting the on-current 
significantly. As we see later, this has remarkable 
implications for flexible electronics. 



Notes and References
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This lecture is mostly based on my unpublished results. 

I follow D. Stauffer and A. Ahrony, Introduction to Percolation Theory, 
Revised 2nd Edition, 2003 for the scaling arguments and generalize is 
appropriately for our specific discussion. 

Width dependence and the physics of striping  has extensive 
experimental support in the following publication: N. Pimparkar et al; 
Nano Research, 2009.

The figures in Slide 14 and 20 are inspired by related figures in “The 
Physics of Amorphous Solids” by Richard Zallen, 1983. 
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