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outline of lecture 2

1) Basic concepts of percolation theory

2) Percolation threshold and ‘excluded volume’

3) Cluster size distribution, cluster Radius

4) Fractal dimension of a random surface

5) Conclusion

Application Notes: Nanocrystal Flash
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three concepts of random systems

Fractal dimension
Aerosol, paper, sensors

Cluster sizes
Oil fields, NC Flash

Percolation threshold
epidemics, forest fire,
telecom grid, www 
Nanonets, photovoltaics
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basic concepts: percolation threshold
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calculation of percolation threshold

pc = 0.593 pc = 0.500 pc = 0.697

Percolation threshold (pc=Nc/NT) depends on lattice,
there is something wrong here !

Square Triangular Hexagonal
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area fraction fill-factor             
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(F x pc) is universal ….

pc = 0.593

Square Triangular Hexagonal

pc = 0.500 pc = 0.697

4
F π
= 2 3

F π
=

3 3
F π
=

Fpc ~ 0.45 Fpc ~ 0.45 Fpc ~ 0.42
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hw: Percolation in 3D lattices

For simple cubic lattice site percolation, 
Fpc ~ 0.16 and pc ~ 0.311. Here F is the 
volume fill fraction, not area fill fraction.

Use the universality of Fpc to show that 
the percolation threshold for FCC lattice 
must be approximately 0.1 
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percolation involving other shapes

How do I determine the percolation threshold?

F pc ~ 0.45 will not work, unfortunately, 
because sticks have zero area, i.e. F~0 !
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excluded area … first an intuitive result
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the concept of excluded area …..
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excluded volume for a stick …
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excluded area for a stick ….
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hw: excluded volume for other shapes ..
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curved stick …

Ans.

square …

Hint. 
Use the stick algorithm 

2 22 (1 2 4 )exA L π π= + +

Hint. Compare with circle  

For general shape, use the 
Monte Carlo code posted 
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summary: percolation threshold
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outline of lecture 2

1) Basic concepts of percolation theory

2) Percolation threshold and ‘excluded volume’

3) Cluster size distribution, cluster Radius

4) Fractal dimension of a random surface

5) Conclusion

Application Notes: Nanocrystal Flash
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three topics of random systems

Fractal dimension
Aerosol, paper, sensors

Cluster sizes
Oil fields, NC Flash

Percolation threshold
epidemics, forest fire,
telecom grid, www 
Nanonets, photovoltaics
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ns

ppC

basic concepts: cluster size

p=0.3 p=0.5 p=0.8 s=infinitys=3 s=22

3( )n p
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cluster-size distribution and its moments

( )sn p

2

0

0

( )

( )

s
s

avg
s

s

s n p
s

sn p
>

>

=
∑
∑

0
( )s

s
p s n p

< <∞

= ×∑

Number of cluster of size s
divided by the number of sites

…plays a role similar to 
Boltzmann distribution f(E, EF)



20

average cluster vs. infinite cluster
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small-cluster size distribution
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features of cluster-size distribution
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numerical plots for cluster-size distribution
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scaling of cluster sizes
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for reasonably large cluster-sizes (s>20)
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average cluster-size distribution
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self-similarity and scale-invariance

self-similarity
regular 

self-similarity
irregular 

self-similarity

ln(ns)

2τ 

( ) ~  s cn p s τ−

ln(s)

This is the origin of the power of the percolation theory …

http://upload.wikimedia.org/wikipedia/commons/7/7b/Bond_percolation_p_51.png�
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outline of lecture 2

1) Basic concepts of percolation theory

2) Percolation threshold and ‘excluded volume’

3) Cluster size distribution, cluster Radius

4) Fractal dimension of a random surface

5) Conclusion

Application Notes: Nanocrystal Flash
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three concepts of random systems

Fractal dimension
Aerosol, paper, sensors

Cluster sizes
Oil fields, NC Flash

Percolation threshold
epidemics, forest fire,
telecom grid, www 
Nanonets, photovoltaics
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basic concepts: dimension of a surface

D=2 D=1 D=0

D=?
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classification of surfaces…
Fractal Dimension (DF)- Box counting technique
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Fractal Dimension of Composites
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example: dimension of a stick network

Dimension depends on stick density …
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fractal dimension at percolation

self-similarity
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h      1/3
N       2

h      1/9
N      4     
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making  of a fractal: dimension of Cantor dust
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regular and irregular fractals
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Preserve DF during transformation (Lecture 5)

cantor transform
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conclusion
Discussed three key concepts of percolative  transport:  

percolation threshold, island size distribution, and fractal 
dimension

The concept of excluded volume provides a (nearly) geometry 
independent way for calculating the percolation threshold for 
arbitrarily shaped objects on arbitrary grid. 

Distribution of island sizes is also described by simple formula 
with universal constants. At percolation threshold, the island sizes 
are self-similar and scale invariant.

Fractal dimension provides a generalized technique to describe 
the dimension of any surfaces, even those defined by randomly 
oriented sticks.  Cantor transform regularizes the structure.
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