
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana Champaign

1

ECE 498AL

Programming Massively Parallel Processors

Lecture 5: CUDA Memories

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana Champaign

2

G80 Implementation of CUDA Memories

• Each thread can:
– Read/write per-thread

registers

– Read/write per-thread
local memory

– Read/write per-block
shared memory

– Read/write per-grid
global memory

– Read/only per-grid
constant memory

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana Champaign

3

CUDA Variable Type Qualifiers

• __device__ is optional when used with
__local__, __shared__, or __constant__

• Automatic variables without any qualifier reside in
a register
– Except arrays that reside in local memory

blockblockshared__device__ __shared__ int SharedVar;

applicationgridglobal__device__ int GlobalVar;

threadthreadlocal__device__ __local__ int LocalVar;

grid

Scope

applicationconstant__device__ __constant__ int ConstantVar;

LifetimeMemoryVariable declaration

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana Champaign

4

Where to Declare Variables?

Can host access it?

Outside of
any Function

In the kernel

yes no
global
constant

register (automatic)
shared
local

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana Champaign

5

Variable Type Restrictions

• Pointers can only point to memory allocated or
declared in global memory:
– Allocated in the host and passed to the kernel:
__global__ void KernelFunc(float* ptr)

– Obtained as the address of a global variable:
float* ptr = &GlobalVar;

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana Champaign

6

A Common Programming Strategy

• Global memory resides in device memory (DRAM)
- much slower access than shared memory

• So, a profitable way of performing computation on
the device is to tile data to take advantage of fast
shared memory:
– Partition data into subsets that fit into shared memory

– Handle each data subset with one thread block by:
• Loading the subset from global memory to shared memory,

using multiple threads to exploit memory-level parallelism

• Performing the computation on the subset from shared
memory; each thread can efficiently multi-pass over any data
element

• Copying results from shared memory to global memory

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana Champaign

7

A Common Programming Strategy
(Cont.)

• Constant memory also resides in device memory
(DRAM) - much slower access than shared
memory
– But… cached!

– Highly efficient access for read-only data

• Carefully divide data according to access patterns
– R/Only constant memory (very fast if in cache)

– R/W shared within Block shared memory (very fast)

– R/W within each thread registers (very fast)

– R/W inputs/results global memory (very slow)

For texture memory usage, see NVIDIA document.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana Champaign

8
8

GPU Atomic Integer Operations

• Atomic operations on integers in global memory:
– Associative operations on signed/unsigned ints

– add, sub, min, max, ...

– and, or, xor

– Increment, decrement

– Exchange, compare and swap

• Requires hardware with compute capability 1.1
and above.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana Champaign

9

Matrix Multiplication using
Shared Memory

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana Champaign

10

Review: Matrix Multiplication
Kernel using Multiple Blocks

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
// Calculate the row index of the Pd element and M

int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;
// Calculate the column idenx of Pd and N

int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

float Pvalue = 0;
// each thread computes one element of the block sub-matrix

for (int k = 0; k < Width; ++k)
Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

Pd[Row*Width+Col] = Pvalue;
}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana Champaign

11

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

How about performance on G80?

• All threads access global memory
for their input matrix elements

– Two memory accesses (8 bytes)
per floating point multiply-add

– 4B/s of memory
bandwidth/FLOPS

– 4*346.5 = 1386 GB/s required to
achieve peak FLOP rating

– 86.4 GB/s limits the code at
21.6 GFLOPS

• The actual code runs at about 15
GFLOPS

• Need to drastically cut down
memory accesses to get closer to
the peak 346.5 GFLOPS

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana Champaign

12

Idea: Use Shared Memory to reuse
global memory data

• Each input element is
read by Width threads.

• Load each element into
Shared Memory and
have several threads
use the local version to
reduce the memory
bandwidth
– Tiled algorithms

M

N

P

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

ty

tx

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana Champaign

13

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTHWIDTH

TILE_WIDTHTILE_WIDTH

bx

tx
01 TILE_WIDTH-12

0 1 2

by ty 2
1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_W

ID
T

H
T

IL
E

_W
ID

T
H

T
IL

E
_W

ID
T

H
E

W
ID

T
H

W
ID

T
H

Tiled Multiply

• Break up the execution of the
kernel into phases so that the
data accesses in each phase is
focused on one subset (tile) of
Md and Nd

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana Champaign

14

Pd1,0

A Small Example

Md2,0

Md1,1

Md1,0Md0,0

Md0,1

Md3,0

Md2,1

Pd0,0

Md3,1 Pd0,1

Pd2,0 Pd3,0

Nd0,3 Nd1,3

Nd1,2

Nd1,1

Nd1,0Nd0,0

Nd0,1

Nd0,2

Pd1,1

Pd0,2 Pd2,2 Pd3,2Pd1,2

Pd3,1Pd2,1

Pd0,3 Pd2,3 Pd3,3Pd1,3

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana Champaign

15

Every Md and Nd Element is used
exactly twice in generating a 2X2 tile of P

M3,1 * N1,3

M2,1 * N1,2

M1,1 * N1,1

M0,1 * N1,0

P1,1

thread1,1

M3,1 * N0,3

M2,1 * N0,2

M1,1 * N0,1

M0,1 * N0,0

P0,1

thread0,1

M3,0 * N1,3M3,0 * N0,3

M2,0 * N1,2M2,0 * N0,2

M1,0 * N1,1M1,0 * N0,1

M0,0 * N1,0M0,0 * N0,0

P1,0

thread1,0

P0,0

thread0,0

Access
order

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana Champaign

16

Pd1,0Md2,0

Md1,1

Md1,0Md0,0

Md0,1

Md3,0

Md2,1

Pd0,0

Md3,1 Pd0,1

Pd2,0 Pd3,0

Nd0,3 Nd1,3

Nd1,2

Nd1,1

Nd1,0Nd0,0

Nd0,1

Nd0,2

Pd1,1

Pd0,2 Pd2,2 Pd3,2Pd1,2

Pd3,1Pd2,1

Pd0,3 Pd2,3 Pd3,3Pd1,3

Breaking Md and Nd into Tiles

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana Champaign

17

Each phase of a Thread Block uses one
tile from Md and one from Nd

PdValue1,1 +=
Mds0,1*Nds1,0 +
Mds1,1*Nds1,1

Nd1,3

↓

Nds1,1

Md3,1

↓

Mds1,1

PdValue1,1 +=
Mds0,1*Nds1,0 +
Mds1,1*Nds1,1

Nd1,1

↓

Nds1,1

Md1,1

↓
Mds1,1

T1,1

PdValue0,1 +=
Mds0,1*Nds0,0 +
Mds1,1*Nds0,1

Nd0,3

↓

Nds0,1

Md2,1

↓

Mds0,1

PdValue0,1 +=
Mds0,1*Nds0,0 +
Mds1,1*Nds0,1

Nd0,1

↓

Nds0,1

Md0,1

↓
Mds0,1

T0,1

PValue1,0 +=
Mds0,0*Nds1,0 +
Mds1,0*Nds1,1

Nd1,2

↓

Nds1,0

Md3,0

↓

Mds1,0

PValue1,0 +=
Mds0,0*Nds1,0 +
Mds1,0*Nds1,1

Nd1,0

↓

Nds1,0

Md1,0

↓
Mds1,0

T1,0

PValue0,0 +=
Mds0,0*Nds0,0 +
Mds1,0*Nds0,1

Nd0,2

↓

Nds0,0

Md2,0

↓

Mds0,0

PValue0,0 +=
Mds0,0*Nds0,0 +
Mds1,0*Nds0,1

Nd0,0

↓

Nds0,0

Md0,0

↓
Mds0,0

T0,0

Step 6Step 5Step 4Phase 1 Phase 2

time

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana Champaign

18

First-order Size Considerations in G80

• Each thread block should have many threads
– TILE_WIDTH of 16 gives 16*16 = 256 threads

• There should be many thread blocks
– A 1024*1024 Pd gives 64*64 = 4096 Thread Blocks

• Each thread block perform 2*256 = 512 float
loads from global memory for 256 * (2*16) =
8,192 mul/add operations.
– Memory bandwidth no longer a limiting factor

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana Champaign

19

CUDA Code – Kernel Execution
Configuration

// Setup the execution configuration

dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);

dim3 dimGrid(Width / TILE_WIDTH,

Width / TILE_WIDTH);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana Champaign

20

Tiled Matrix Multiplication Kernel
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
1. __shared__float Mds[TILE_WIDTH][TILE_WIDTH];
2. __shared__float Nds[TILE_WIDTH][TILE_WIDTH];

3. int bx = blockIdx.x; int by = blockIdx.y;
4. int tx = threadIdx.x; int ty = threadIdx.y;

// Identify the row and column of the Pd element to work on
5. int Row = by * TILE_WIDTH + ty;
6. int Col = bx * TILE_WIDTH + tx;

7. float Pvalue = 0;
// Loop over the Md and Nd tiles required to compute the Pd element
8. for (int m = 0; m < Width/TILE_WIDTH; ++m) {
// Coolaborative loading of Md and Nd tiles into shared memory
9. Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];
10. Nds[ty][tx] = Nd[Col + (m*TILE_WIDTH + ty)*Width];
11. __syncthreads();

11. for (int k = 0; k < TILE_WIDTH; ++k)
12. Pvalue += Mds[ty][k] * Nds[k][tx];
13. Synchthreads();
14. }
13. Pd[Row*Width+Col] = Pvalue;
}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana Champaign

21

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTHWIDTH

TILE_WIDTHTILE_WIDTH

bx

tx
01 TILE_WIDTH-12

0 1 2

by ty 2
1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_W

ID
T

H
T

IL
E

_W
ID

T
H

T
IL

E
_W

ID
T

H
E

W
ID

T
H

W
ID

T
H

Tiled Multiply

• Each block computes one
square sub-matrix Pdsub of size
TILE_WIDTH

• Each thread computes one
element of Pdsub

m

kbx

by

k

m

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana Champaign

22

G80 Shared Memory and Threading

• Each SM in G80 has 16KB shared memory
– SM size is implementation dependent!

– For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB
of shared memory.

– Can potentially have up to 8 Thread Blocks actively executing
• This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256

threads per block)

– The next TILE_WIDTH 32 would lead to 2*32*32*4B= 8KB
shared memory usage per thread block, allowing only up to two
thread blocks active at the same time

• Using 16x16 tiling, we reduce the accesses to the global
memory by a factor of 16
– The 86.4B/s bandwidth can now support (86.4/4)*16 = 347.6

GFLOPS!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana Champaign

23

Tiling Size Effects

0

10

20

30

40

50

60

70

80

90

100
tile

d
on

ly

tile
d

&
un

ro
lle

d

tile
d

on
ly

tile
d

&
un

ro
lle

d

tile
d

on
ly

tile
d

&
un

ro
lle

d

tile
d

on
ly

tile
d

&
un

ro
lle

d

not tiled 4x4 tiles 8x8 tiles 12x12 tiles 16x16 tiles

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana Champaign

24

• Global variables declaration
‒ __host__
‒ __device__... __global__, __constant__, __texture__

• Function prototypes
‒ __global__ void kernelOne(…)
‒ float handyFunction(…)

• Main ()
‒ allocate memory space on the device ‒ cudaMalloc(&d_GlblVarPtr, bytes)
‒ transfer data from host to device ‒ cudaMemCpy(d_GlblVarPtr, h_Gl…)
‒ execution configuration setup
‒ kernel call ‒ kernelOne<<<execution configuration>>>(args…);
‒ transfer results from device to host ‒ cudaMemCpy(h_GlblVarPtr,…)
‒ optional: compare against golden (host computed) solution

• Kernel ‒ void kernelOne(type args,…)
‒ variables declaration - __local__, __shared__

• automatic variables transparently assigned to registers or local memory
‒ syncthreads()…

• Other functions
‒ float handyFunction(int inVar…);

Summary- Typical Structure of a
CUDA Program

repeat
as needed

