
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

1

ECE498AL

Lecture 3: A Simple Example,
Tools, and CUDA Threads

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

2

A Simple Running Example
Matrix Multiplication

• A simple matrix multiplication example that
illustrates the basic features of memory and
thread management in CUDA programs
– Leave shared memory usage until later

– Local, register usage

– Thread ID usage

– Memory data transfer API between host and device

– Assume square matrix for simplicity

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

3

Programming Model:
Square Matrix Multiplication Example

• P = M * N of size WIDTH x WIDTH

• Without tiling:
– One thread calculates one element

of P

– M and N are loaded WIDTH times
from global memory

M

N

P

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

4

M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

M1,3M0,3 M2,3 M3,3

M

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

5

Step 1: Matrix Multiplication
A Simple Host Version in C

M

N

P

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

// Matrix multiplication on the (CPU) host in double precision
void MatrixMulOnHost(float* M, float* N, float* P, int Width)
{

for (int i = 0; i < Width; ++i)
for (int j = 0; j < Width; ++j) {

double sum = 0;
for (int k = 0; k < Width; ++k) {

double a = M[i * width + k];
double b = N[k * width + j];
sum += a * b;

}
P[i * Width + j] = sum;

}
}

i

k

k

j

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

6

void MatrixMulOnDevice(float* M, float* N, float* P, int Width)

{
int size = Width * Width * sizeof(float);
float* Md, Nd, Pd;
…

1. // Allocate and Load M, N to device memory
cudaMalloc(&Md, size);
cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMalloc(&Nd, size);
cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);

// Allocate P on the device
cudaMalloc(&Pd, size);

Step 2: Input Matrix Data Transfer
(Host-side Code)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

7

Step 3: Output Matrix Data Transfer
(Host-side Code)

2. // Kernel invocation code – to be shown later
…

3. // Read P from the device
cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);

// Free device matrices
cudaFree(Md); cudaFree(Nd); cudaFree (Pd);
}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

8

Step 4: Kernel Function

// Matrix multiplication kernel – per thread code

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{

// Pvalue is used to store the element of the matrix
// that is computed by the thread
float Pvalue = 0;

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

9

Nd

Md Pd

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

Step 4: Kernel Function (cont.)

for (int k = 0; k < Width; ++k) {
float Melement = Md[threadIdx.y*Width+k];
float Nelement = Nd[k*Width+threadIdx.x];
Pvalue += Melement * Nelement;

}

Pd[threadIdx.y*Width+threadIdx.x] = Pvalue;
}

ty

tx

ty

tx

k

k

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

10

// Setup the execution configuration
dim3 dimGrid(1, 1);
dim3 dimBlock(Width, Width);

// Launch the device computation threads!
MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

Step 5: Kernel Invocation
(Host-side Code)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

11

Only One Thread Block Used

• One Block of threads compute
matrix Pd
– Each thread computes one

element of Pd

• Each thread
– Loads a row of matrix Md
– Loads a column of matrix Nd
– Perform one multiply and

addition for each pair of Md
and Nd elements

– Compute to off-chip memory
access ratio close to 1:1 (not
very high)

• Size of matrix limited by the
number of threads allowed in a
thread block

Grid 1

Block 1

3 2 5 4

2

4

2

6

48

Thread
(2, 2)

WIDTH

Md Pd

Nd

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

12

Step 7: Handling Arbitrary Sized Square
Matrices (will cover later)

• Have each 2D thread block to
compute a (TILE_WIDTH)2 sub-
matrix (tile) of the result matrix
– Each has (TILE_WIDTH)2 threads

• Generate a 2D Grid of
(WIDTH/TILE_WIDTH)2 blocks

Md

Nd

Pd

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

ty

tx

by

bx

You still need to put a loop
around the kernel call for cases
where WIDTH/TILE_WIDTH
is greater than max grid size
(64K)!

TILE_WIDTH

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

13

Some Useful Information on
Tools

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

14

Compiling a CUDA Program

NVCC

C/C++ CUDA
Application

PTX to Target
Compiler

G80 … GPU

Target code

PTX CodeVirtual

Physical

CPU Code

• Parallel Thread
eXecution (PTX)
– Virtual Machine

and ISA
– Programming

model
– Execution

resources and
state

float4 me = gx[gtid];
me.x += me.y * me.z;

ld.global.v4.f32 {$f1,$f3,$f5,$f7}, [$r9+0];
mad.f32 $f1, $f5, $f3, $f1;

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

15

Compilation

• Any source file containing CUDA language
extensions must be compiled with NVCC

• NVCC is a compiler driver
– Works by invoking all the necessary tools and

compilers like cudacc, g++, cl, ...

• NVCC outputs:
– C code (host CPU Code)

• Must then be compiled with the rest of the application using another tool

– PTX
• Object code directly

• Or, PTX source, interpreted at runtime

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

16

Linking

• Any executable with CUDA code requires two
dynamic libraries:
– The CUDA runtime library (cudart)

– The CUDA core library (cuda)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

17

Debugging Using the
Device Emulation Mode

• An executable compiled in device emulation
mode (nvcc -deviceemu) runs completely on
the host using the CUDA runtime
– No need of any device and CUDA driver
– Each device thread is emulated with a host thread

• Running in device emulation mode, one can:
– Use host native debug support (breakpoints, inspection, etc.)
– Access any device-specific data from host code and vice-versa
– Call any host function from device code (e.g. printf) and

vice-versa
– Detect deadlock situations caused by improper usage of

__syncthreads

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

18

Device Emulation Mode Pitfalls
• Emulated device threads execute sequentially,

so simultaneous accesses of the same memory
location by multiple threads could produce
different results.

• Dereferencing device pointers on the host or host
pointers on the device can produce correct
results in device emulation mode, but will
generate an error in device execution mode

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

19

Floating Point

• Results of floating-point computations will slightly
differ because of:
– Different compiler outputs, instruction sets

– Use of extended precision for intermediate results
• There are various options to force strict single precision on

the host

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

20

CUDA Threads

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

21

Host

Kernel
1

Kernel
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(0, 1)

Block
(1, 1)

Grid 2

Courtesy: NDVIA

Block (1, 1)

Thread
(0,1,0)

Thread
(1,1,0)

Thread
(2,1,0)

Thread
(3,1,0)

Thread
(0,0,0)

Thread
(1,0,0)

Thread
(2,0,0)

Thread
(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

Block IDs and Thread IDs

• Each thread uses IDs to
decide what data to work on
– Block ID: 1D or 2D
– Thread ID: 1D, 2D, or 3D

• Simplifies memory
addressing when
processing
multidimensional data
– Image processing
– Solving PDEs on volumes
– …

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

22

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTHWIDTH

bx

tx
01 TILE_WIDTH-12

0 1 2

by ty 2
1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_W

ID
T

H
E

W
ID

T
H

W
ID

T
H

Matrix Multiplication Using
Multiple Blocks
• Break-up Pd into tiles

• Each block calculates one
tile
– Each thread calculates one

element

– Block size equal tile size

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

23

P1,0P0,0

P0,1

P2,0 P3,0

P1,1

P0,2 P2,2 P3,2P1,2

P3,1P2,1

P0,3 P2,3 P3,3P1,3

Block(0,0) Block(1,0)

Block(1,1)Block(0,1)

TILE_WIDTH = 2

A Small Example

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

24

Pd1,0

A Small Example: Multiplication

Md2,0

Md1,1

Md1,0Md0,0

Md0,1

Md3,0

Md2,1

Pd0,0

Md3,1 Pd0,1

Pd2,0 Pd3,0

Nd0,3 Nd1,3

Nd1,2

Nd1,1

Nd1,0Nd0,0

Nd0,1

Nd0,2

Pd1,1

Pd0,2 Pd2,2 Pd3,2Pd1,2

Pd3,1Pd2,1

Pd0,3 Pd2,3 Pd3,3Pd1,3

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

25

Revised Matrix Multiplication
Kernel using Multiple Blocks

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
// Calculate the row index of the Pd element and M

int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;
// Calculate the column idenx of Pd and N

int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

float Pvalue = 0;
// each thread computes one element of the block sub-matrix

for (int k = 0; k < Width; ++k)
Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

Pd[Row*Width+Col] = Pvalue;
}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

26

CUDA Thread Block

• All threads in a block execute the same
kernel program (SPMD)

• Programmer declares block:
– Block size 1 to 512 concurrent threads
– Block shape 1D, 2D, or 3D
– Block dimensions in threads

• Threads have thread id numbers within block
– Thread program uses thread id to select

work and address shared data

• Threads in the same block share data and
synchronize while doing their share of the
work

• Threads in different blocks cannot cooperate
– Each block can execute in any order relative

to other blocs!

CUDA Thread Block

Thread Id #:
0 1 2 3 … m

Thread program

Courtesy: John Nickolls, NVIDIA

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

27

Transparent Scalability

• Hardware is free to assigns blocks to any
processor at any time
– A kernel scales across any number of

parallel processors
Device

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

Each block can execute in any order relative to
other blocks.

time

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

28

G80 Example: Executing Thread Blocks

• Threads are assigned to Streaming
Multiprocessors in block granularity
– Up to 8 blocks to each SM as

resource allows

– SM in G80 can take up to 768 threads
• Could be 256 (threads/block) * 3

blocks

• Or 128 (threads/block) * 6 blocks, etc.

• Threads run concurrently
– SM maintains thread/block id #s

– SM manages/schedules thread
execution

t0 t1 t2 … tm

Blocks

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

t0 t1 t2 … tm

Blocks

SM 1SM 0

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

29

G80 Example: Thread Scheduling

• Each Block is executed as
32-thread Warps
– An implementation decision,

not part of the CUDA
programming model

– Warps are scheduling units
in SM

• If 3 blocks are assigned to an
SM and each block has 256
threads, how many Warps are
there in an SM?
– Each Block is divided into

256/32 = 8 Warps

– There are 8 * 3 = 24 Warps

…
t0 t1 t2 … t31

…

…
t0 t1 t2 … t31

…Block 1 Warps Block 2 Warps

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Instruction Fetch/Dispatch

Instruction L1

Streaming Multiprocessor

Shared Memory

…
t0 t1 t2 … t31

…Block 1 Warps

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

30

G80 Example: Thread Scheduling
(Cont.)

• SM implements zero-overhead warp scheduling
– At any time, only one of the warps is executed by SM
– Warps whose next instruction has its operands ready for

consumption are eligible for execution
– Eligible Warps are selected for execution on a prioritized

scheduling policy
– All threads in a warp execute the same instruction when selected

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

31

G80 Block Granularity Considerations

• For Matrix Multiplication using multiple blocks, should I
use 8X8, 16X16 or 32X32 blocks?

– For 8X8, we have 64 threads per Block. Since each SM can take
up to 768 threads, there are 12 Blocks. However, each SM can
only take up to 8 Blocks, only 512 threads will go into each SM!

– For 16X16, we have 256 threads per Block. Since each SM can
take up to 768 threads, it can take up to 3 Blocks and achieve full
capacity unless other resource considerations overrule.

– For 32X32, we have 1024 threads per Block. Not even one can fit
into an SM!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

32

Some Additional API Features

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

33

Application Programming Interface

• The API is an extension to the C programming
language

• It consists of:
– Language extensions

• To target portions of the code for execution on the device

– A runtime library split into:
• A common component providing built-in vector types and a

subset of the C runtime library in both host and device
codes

• A host component to control and access one or more
devices from the host

• A device component providing device-specific functions

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

34

Language Extensions:
Built-in Variables

• dim3 gridDim;
– Dimensions of the grid in blocks (gridDim.z

unused)

• dim3 blockDim;
– Dimensions of the block in threads

• dim3 blockIdx;
– Block index within the grid

• dim3 threadIdx;
– Thread index within the block

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

35

Common Runtime Component:
Mathematical Functions

• pow, sqrt, cbrt, hypot

• exp, exp2, expm1

• log, log2, log10, log1p

• sin, cos, tan, asin, acos, atan, atan2

• sinh, cosh, tanh, asinh, acosh, atanh

• ceil, floor, trunc, round

• Etc.

– When executed on the host, a given function uses
the C runtime implementation if available

– These functions are only supported for scalar types,
not vector types

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

36

Device Runtime Component:
Mathematical Functions

• Some mathematical functions (e.g. sin(x))
have a less accurate, but faster device-only
version (e.g. __sin(x))
– __pow

– __log, __log2, __log10

– __exp

– __sin, __cos, __tan

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

37

Host Runtime Component

• Provides functions to deal with:
– Device management (including multi-device systems)

– Memory management

– Error handling

• Initializes the first time a runtime function is called

• A host thread can invoke device code on only one
device
– Multiple host threads required to run on multiple

devices

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

38

Device Runtime Component:
Synchronization Function

• void __syncthreads();

• Synchronizes all threads in a block

• Once all threads have reached this point,
execution resumes normally

• Used to avoid RAW / WAR / WAW hazards
when accessing shared or global memory

• Allowed in conditional constructs only if the
conditional is uniform across the entire thread
block

