ECE498AL

Lecture 3: A Simple Example, Tools, and CUDA Threads

A Simple Running Example Matrix Multiplication

- A simple matrix multiplication example that illustrates the basic features of memory and thread management in CUDA programs
 - Leave shared memory usage until later
 - Local, register usage
 - Thread ID usage
 - Memory data transfer API between host and device
 - Assume square matrix for simplicity

Programming Model: Square Matrix Multiplication Example

Step 1: Matrix Multiplication A Simple Host Version in C

// Matrix multiplication on the (CPU) host in double precision void MatrixMulOnHost(float* M, float* N, float* P, int Width)

Step 2: Input Matrix Data Transfer (Host-side Code)

```
void MatrixMulOnDevice(float* M, float* N, float* P, int Width)
```

```
int size = Width * Width * sizeof(float);
float* Md, Nd, Pd;
```

```
    // Allocate and Load M, N to device memory
cudaMalloc(&Md, size);
cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);
```

```
cudaMalloc(&Nd, size);
cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);
```

// Allocate P on the device
cudaMalloc(&Pd, size);

Step 3: Output Matrix Data Transfer (Host-side Code)

- 2. // Kernel invocation code to be shown later ...
- // Read P from the device cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);

// Free device matrices
cudaFree(Md); cudaFree(Nd); cudaFree (Pd);

Step 4: Kernel Function

// Matrix multiplication kernel – per thread code

_global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)

// Pvalue is used to store the element of the matrix
// that is computed by the thread
float Pvalue = 0;

Step 4: Kernel Function (cont.)

Step 5: Kernel Invocation (Host-side Code)

// Setup the execution configuration dim3 dimGrid(1, 1); dim3 dimBlock(Width, Width);

// Launch the device computation threads!
MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

Only One Thread Block Used

- One Block of threads compute matrix Pd
 - Each thread computes one element of Pd
- Each thread
 - Loads a row of matrix Md
 - Loads a column of matrix Nd
 - Perform one multiply and addition for each pair of Md and Nd elements
 - Compute to off-chip memory access ratio close to 1:1 (not very high)
- Size of matrix limited by the number of threads allowed in a thread block

Step 7: Handling Arbitrary Sized Square Matrices (will cover later)

- Have each 2D thread block to compute a (TILE_WIDTH)² submatrix (tile) of the result matrix
 - Each has (TILE_WIDTH)² threads

Md

 Generate a 2D Grid of (WIDTH/TILE_WIDTH)² blocks

You still need to put a loop around the kernel call for cases where WIDTH/TILE_WIDTH is greater than max grid size (64K)!

Some Useful Information on Tools

Compiling a CUDA Program C/C++ CUDA float4 me = qx[qtid]; me. x += me. y * me. z; Parallel Thread • **Application** eXecution (PTX) **Virtual Machine** and ISA **CPU Code NVCC** Programming model Execution **PTX Code** Virtual resources and state Physical PTX to Target ld.global.v4.f32 {**\$**f1, **\$**f3, **\$**f5, **\$**f7}, [**\$**r9+0];

mad. f32

Target code © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 ECE498AL, University of Illinois, Urbana-Champaign

Compiler

14

\$f5, \$f3, \$f1;

\$f1

Compilation

- Any source file containing CUDA language extensions must be compiled with NVCC
- NVCC is a compiler driver
 - Works by invoking all the necessary tools and compilers like cudacc, g++, cl, ...
- NVCC outputs:
 - C code (host CPU Code)
 - Must then be compiled with the rest of the application using another tool
 - PTX
 - Object code directly
 - Or, PTX source, interpreted at runtime

Linking

- Any executable with CUDA code requires two dynamic libraries:
 - The CUDA runtime library (cudart)
 - The CUDA core library (cuda)

Debugging Using the Device Emulation Mode

- An executable compiled in device emulation mode (nvcc -deviceemu) runs completely on the host using the CUDA runtime
 - No need of any device and CUDA driver
 - Each device thread is emulated with a host thread
- Running in device emulation mode, one can:
 - Use host native debug support (breakpoints, inspection, etc.)
 - Access any device-specific data from host code and vice-versa
 - Call any host function from device code (e.g. printf) and vice-versa
 - Detect deadlock situations caused by improper usage of <u>syncthreads</u>

Device Emulation Mode Pitfalls

- Emulated device threads execute sequentially, so simultaneous accesses of the same memory location by multiple threads could produce different results.
- Dereferencing device pointers on the host or host pointers on the device can produce correct results in device emulation mode, but will generate an error in device execution mode

Floating Point

- Results of floating-point computations will slightly differ because of:
 - Different compiler outputs, instruction sets
 - Use of extended precision for intermediate results
 - There are various options to force strict single precision on the host

CUDA Threads

Block IDs and Thread IDs

A Small Example: Multiplication

Revised Matrix Multiplication Kernel using Multiple Blocks

```
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
    // Calculate the row index of the Pd element and M
    int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;
    // Calculate the column idenx of Pd and N
    int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;
```

```
float Pvalue = 0;
// each thread computes one element of the block sub-matrix
for (int k = 0; k < Width; ++k)
    Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];
```

```
Pd[Row*Width+Col] = Pvalue;
```

CUDA Thread Block

- All threads in a block execute the same kernel program (SPMD)
- Programmer declares block:
 - Block size 1 to **512** concurrent threads
 - Block shape 1D, 2D, or 3D
 - Block dimensions in threads
- Threads have thread id numbers within block
 - Thread program uses thread id to select work and address shared data
- Threads in the same block share data and synchronize while doing their share of the work
- Threads in different blocks cannot cooperate
 - Each block can execute in any order relative to other blocs!

CUDA Thread Block

Courtesy: John Nickolls, NVIDIA

Transparent Scalability

- Hardware is free to assigns blocks to any processor at any time
 - A kernel scales across any number of parallel processors

G80 Example: Executing Thread Blocks

t0 t1 t2 ... tm

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 ECE498AL, University of Illinois, Urbana-Champaign

SM 0 SM 1

SP

MTIU

SP

t0 t1 t2 ... tm

Blocks

Threads are assigned to Streaming Multiprocessors in block granularity

- Up to 8 blocks to each SM as resource allows
- SM in G80 can take up to **768** threads
 - Could be 256 (threads/block) * 3 blocks
 - Or 128 (threads/block) * 6 blocks, etc.
- Threads run concurrently

Blocks

- SM maintains thread/block id #s
 - SM manages/schedules thread execution

G80 Example: Thread Scheduling

- Each Block is executed as 32-thread Warps
 - An implementation decision, not part of the CUDA programming model
 - Warps are scheduling units in SM
- If 3 blocks are assigned to an SM and each block has 256 threads, how many Warps are there in an SM?
 - Each Block is divided into 256/32 = 8 Warps
 - There are 8 * 3 = 24 Warps

G80 Example: Thread Scheduling (Cont.)

- SM implements zero-overhead warp scheduling
 - At any time, only one of the warps is executed by SM
 - Warps whose next instruction has its operands ready for consumption are eligible for execution
 - Eligible Warps are selected for execution on a prioritized scheduling policy
 - All threads in a warp execute the same instruction when selected

ECE498AL, University of Illinois, Urbana-Champaign

G80 Block Granularity Considerations

- For Matrix Multiplication using multiple blocks, should I use 8X8, 16X16 or 32X32 blocks?
 - For 8X8, we have 64 threads per Block. Since each SM can take up to 768 threads, there are 12 Blocks. However, each SM can only take up to 8 Blocks, only 512 threads will go into each SM!
 - For 16X16, we have 256 threads per Block. Since each SM can take up to 768 threads, it can take up to 3 Blocks and achieve full capacity unless other resource considerations overrule.
 - For 32X32, we have 1024 threads per Block. Not even one can fit into an SM!

Some Additional API Features

Application Programming Interface

- The API is an extension to the C programming language
- It consists of:
 - Language extensions
 - To target portions of the code for execution on the device
 - A runtime library split into:
 - A common component providing built-in vector types and a subset of the C runtime library in both host and device codes
 - A host component to control and access one or more devices from the host
 - A device component providing device-specific functions

Language Extensions: Built-in Variables

- dim3 gridDim;
 - Dimensions of the grid in blocks (gridDim.z unused)
- dim3 blockDim;
 - Dimensions of the block in threads
- dim3 blockIdx;
 - Block index within the grid
- dim3 threadIdx;
 - Thread index within the block

Common Runtime Component: Mathematical Functions

- pow, sqrt, cbrt, hypot
- exp, exp2, expm1
- log, log2, log10, log1p
- sin, cos, tan, asin, acos, atan, atan2
- sinh, cosh, tanh, asinh, acosh, atanh
- ceil, floor, trunc, round
- Etc.
 - When executed on the host, a given function uses the C runtime implementation if available
 - These functions are only supported for scalar types, not vector types

Device Runtime Component: Mathematical Functions

 Some mathematical functions (e.g. sin(x)) have a less accurate, but faster device-only version (e.g. __sin(x))

- <u>log, log2, log10</u>
- <u>exp</u>

Host Runtime Component

- Provides functions to deal with:
 - Device management (including multi-device systems)
 - Memory management
 - Error handling
- Initializes the first time a runtime function is called
- A host thread can invoke device code on only one device
 - Multiple host threads required to run on multiple devices

Device Runtime Component: Synchronization Function

- void __syncthreads();
- Synchronizes all threads in a block
- Once all threads have reached this point, execution resumes normally
- Used to avoid RAW / WAR / WAW hazards when accessing shared or global memory
- Allowed in conditional constructs only if the conditional is uniform across the entire thread block