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ECE 498AL

Lecture 2:
The CUDA Programming Model
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What is (Historical) GPGPU ?

• General Purpose computation using GPU and graphics API in 
applications other than 3D graphics
– GPU accelerates critical path of application

• Data parallel algorithms leverage GPU attributes
– Large data arrays, streaming throughput

– Fine-grain SIMD parallelism

– Low-latency floating point (FP) computation

• Applications – see //GPGPU.org
– Game effects (FX) physics, image processing

– Physical modeling, computational engineering, matrix algebra, 
convolution, correlation, sorting
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Previous GPGPU Constraints
• Dealing with graphics API

– Working with the corner cases of the 
graphics API

• Addressing modes
– Limited texture size/dimension

• Shader capabilities
– Limited outputs

• Instruction sets
– Lack of Integer & bit ops

• Communication limited
– Between pixels

– Scatter  a[i] = p

Input Registers

Fragment Program

Output Registers

Constants

Texture

Temp Registers

per thread
per Shader
per Context

FB       Memory
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CUDA

• “Compute Unified Device Architecture”

• General purpose programming model
– User kicks off batches of threads on the GPU

– GPU = dedicated super-threaded, massively data parallel co-processor

• Targeted software stack
– Compute oriented drivers, language, and tools

• Driver for loading computation programs into GPU
– Standalone Driver - Optimized for computation 

– Interface designed for compute – graphics-free API

– Data sharing with OpenGL buffer objects 

– Guaranteed maximum download & readback speeds

– Explicit GPU memory management
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An Example of Physical Reality
Behind CUDA

CPU
(host)

GPU w/ 
local DRAM

(device)
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Parallel Computing on a GPU

• 8-series GPUs deliver 25 to 200+ GFLOPS
on compiled parallel C applications
– Available in laptops, desktops, and clusters

• GPU parallelism is doubling every year
• Programming model scales transparently

• Programmable in C with CUDA tools
• Multithreaded SPMD model uses application 

data parallelism and thread parallelism

GeForce 8800

Tesla S870

Tesla D870
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Overview

• CUDA programming model – basic concepts and 
data types

• CUDA application programming interface - basic

• Simple examples to illustrate basic concepts and 
functionalities

• Performance features will be covered later
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CUDA – C with no shader limitations!
• Integrated host+device app C program

– Serial or modestly parallel parts in host C code

– Highly parallel parts in device SPMD kernel C code

Serial Code (host) 

. . .

. . .

Parallel Kernel (device) 

KernelA<<< nBlk, nTid >>>(args);

Serial Code (host) 

Parallel Kernel (device) 

KernelB<<< nBlk, nTid >>>(args);
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CUDA Devices and Threads

• A compute device
– Is a coprocessor to the CPU or host

– Has its own DRAM (device memory) 

– Runs many threads in parallel

– Is typically a GPU but can also be another type of  parallel processing 
device 

• Data-parallel portions of an application are expressed as device 
kernels which run on many threads

• Differences between GPU and CPU threads 
– GPU threads are extremely lightweight

• Very little creation overhead

– GPU needs 1000s of threads for full efficiency
• Multi-core CPU needs only a few
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• The future of GPUs is programmable processing

• So – build the architecture around the processor

G80 – Graphics Mode
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G80 CUDA mode – A Device Example
• Processors execute computing threads

• New operating mode/HW interface for computing

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Load/store Load/store Load/store Load/store Load/store
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Extended C
• Declspecs

– global, device, shared, 
local, constant

• Keywords
– threadIdx, blockIdx

• Intrinsics
– __syncthreads

• Runtime API
– Memory, symbol, 

execution management

• Function launch

__device__ float filter[N]; 

__global__ void convolve (float *image)  {

__shared__ float region[M];
... 

region[threadIdx] = image[i]; 

__syncthreads()  
... 

image[j] = result;
}

// Allocate GPU memory
void *myimage = cudaMalloc(bytes)

// 100 blocks, 10 threads per block
convolve<<<100, 10>>> (myimage);
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gcc / cl

G80 SASS
foo.sass

OCG

Extended C

cudacc
EDG C/C++ frontend

Open64 Global Optimizer

GPU  Assembly
foo.s

CPU Host Code 
foo.cpp

Integrated source
(foo.cu)

Mark Murphy, “NVIDIA’s Experience with 
Open64,”
www.capsl.udel.edu/conferences/open64/2008
/Papers/101.doc
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Arrays of Parallel Threads

• A CUDA kernel is executed by an array of
threads
– All threads run the same code (SPMD) 
– Each thread has an ID that it uses to compute 

memory addresses and make control decisions

76543210

…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

threadID
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…
float x = 
input[threadID];
float y = func(x);
output[threadID] = y;
…

threadID

Thread Block 0

…
…
float x = 
input[threadID];
float y = func(x);
output[threadID] = y;
…

Thread Block 0

…
float x = 
input[threadID];
float y = func(x);
output[threadID] = y;
…

Thread Block N - 1

Thread Blocks: Scalable Cooperation

• Divide monolithic thread array into multiple blocks
– Threads within a block cooperate via shared memory, 

atomic operations and barrier synchronization

– Threads in different blocks cannot cooperate

76543210 76543210 76543210
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Host

Kernel 
1

Kernel 
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(0, 1)

Block
(1, 1)

Grid 2

Courtesy: NDVIA

Block (1,  1)

Thread
(0,1,0)

Thread
(1,1,0)

Thread
(2,1,0)

Thread
(3,1,0)

Thread
(0,0,0)

Thread
(1,0,0)

Thread
(2,0,0)

Thread
(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

Block IDs and Thread IDs

• Each thread uses IDs to decide 
what data to work on
– Block ID: 1D or 2D
– Thread ID: 1D, 2D, or 3D 

• Simplifies memory
addressing when processing
multidimensional data
– Image processing
– Solving PDEs on volumes
– …
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CUDA Memory Model Overview

• Global memory
– Main means of 

communicating R/W 
Data between host and 
device

– Contents visible to all 
threads

– Long latency access

• We will focus on global 
memory for now
– Constant and texture 

memory will come later

Grid

Global Memory

Block (0, 0) 

Shared Memory

Thread (0, 0) 

Registers

Thread (1, 0) 

Registers

Block (1, 0) 

Shared Memory

Thread (0, 0) 

Registers

Thread (1, 0) 

Registers

Host
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CUDA API Highlights:
Easy and Lightweight

• The API is an extension to the ANSI C programming 
language

Low learning curve

• The hardware is designed to enable lightweight 
runtime and driver

High performance
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CUDA Device Memory Allocation

• cudaMalloc()
– Allocates object in the 

device Global MemoryGlobal Memory

– Requires two parameters
• Address of a pointer to the 

allocated object

• Size of of allocated object

• cudaFree()
– Frees object from device 

Global Memory
• Pointer to freed object

Grid

Global
Memory

Block (0, 0) 

Shared Memory

Thread (0, 0) 

Registers

Thread (1, 0) 

Registers

Block (1, 0) 

Shared Memory

Thread (0, 0) 

Registers

Thread (1, 0) 

Registers

Host
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CUDA Device Memory Allocation (cont.) 

• Code example: 
– Allocate a  64 * 64 single precision float array

– Attach the allocated storage to Md

– “d” is often used to indicate a device data structure

TILE_WIDTH = 64;
Float* Md
int size = TILE_WIDTH * TILE_WIDTH * sizeof(float);

cudaMalloc((void**)&Md, size);
cudaFree(Md);
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CUDA Host-Device Data Transfer

• cudaMemcpy() 
– memory data transfer

– Requires four parameters
• Pointer to destination 

• Pointer to source

• Number of bytes copied

• Type of transfer 

– Host to Host

– Host to Device

– Device to Host

– Device to Device

• Asynchronous transfer

Grid

Global
Memory

Block (0, 0) 

Shared Memory

Thread (0, 0) 

Registers

Thread (1, 0) 

Registers

Block (1, 0) 

Shared Memory

Thread (0, 0) 

Registers

Thread (1, 0) 

Registers

Host
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CUDA Host-Device Data Transfer
(cont.)

• Code example: 
– Transfer a  64 * 64 single precision float array

– M is in host memory and Md is in device memory

– cudaMemcpyHostToDevice and 
cudaMemcpyDeviceToHost are symbolic constants

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMemcpy(M, Md, size, cudaMemcpyDeviceToHost);
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CUDA Keywords
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CUDA Function Declarations

hosthost__host__ float HostFunc() 

hostdevice__global__ void  KernelFunc() 

devicedevice__device__ float DeviceFunc() 

Only callable 
from the:

Executed 
on the:

• __global__ defines a kernel function
– Must return void

• __device__ and __host__ can be used 
together
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CUDA Function Declarations (cont.) 

• __device__ functions cannot have their 
address taken

• For functions executed on the device:
– No recursion

– No static variable declarations inside the function

– No variable number of arguments
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Calling a Kernel Function – Thread Creation

• A kernel function must be called with an execution 
configuration:

__global__ void KernelFunc(...);

dim3 DimGrid(100, 50);    // 5000 thread blocks 

dim3 DimBlock(4, 8, 8);   // 256 threads per 
block 

size_t SharedMemBytes = 64; // 64 bytes of shared 
memory

KernelFunc<<< DimGrid, DimBlock, SharedMemBytes
>>>(...);

• Any call to a kernel function is asynchronous from 
CUDA 1.0 on, explicit synch needed for blocking
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A Simple Running Example
Matrix Multiplication

• A simple matrix multiplication example that illustrates 
the basic features of memory and thread management 
in CUDA programs
– Leave shared memory usage until later

– Local, register usage

– Thread ID usage

– Memory data transfer API between host and device

– Assume square matrix for simplicity
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Programming Model:
Square Matrix Multiplication Example

• P = M * N of size WIDTH x WIDTH

• Without tiling:
– One thread calculates one element of P

– M and N are loaded WIDTH times from 
global memory

M

N

P

W
ID

T
H

W
ID

T
H

WIDTH WIDTH
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M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

M1,3M0,3 M2,3 M3,3

M
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Step 1: Matrix Multiplication
A Simple Host Version in C

M

N

P

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

// Matrix multiplication on the (CPU) host in double precision
void MatrixMulOnHost(float* M, float* N, float* P, int Width) 
{   

for (int i = 0; i < Width; ++i) 
for (int j = 0; j < Width; ++j) {

double sum = 0;
for (int k = 0; k < Width; ++k) {

double a = M[i * width + k];
double b = N[k * width + j];
sum += a * b;

}
P[i * Width + j] = sum;

}
}

i

k

k

j
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void MatrixMulOnDevice(float* M, float* N, float* P, int Width) 

{
int size = Width * Width * sizeof(float); 
float* Md, Nd, Pd;
…

1. // Allocate and Load M, N to device memory 
cudaMalloc(&Md, size);
cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMalloc(&Nd, size);
cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);

// Allocate P on the device
cudaMalloc(&Pd, size);

Step 2: Input Matrix Data Transfer
(Host-side Code) 
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Step 3: Output Matrix Data Transfer
(Host-side Code) 

2.   // Kernel invocation code – to be shown later
…

3.    // Read P from the device
cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);

// Free device matrices
cudaFree(Md); cudaFree(Nd); cudaFree (Pd);
}
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Step 4: Kernel Function

// Matrix multiplication kernel – per thread code

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width) 
{

// Pvalue is used to store the element of the matrix
// that is computed by the thread
float Pvalue = 0;
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Nd

Md Pd
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WIDTH WIDTH

Step 4: Kernel Function  (cont.) 

for (int k = 0; k < Width; ++k) {
float Melement = Md[threadIdx.y*Width+k];
float Nelement = Nd[k*Width+threadIdx.x];
Pvalue += Melement * Nelement;

}

Pd[threadIdx.y*Width+threadIdx.x] = Pvalue;
}

ty

tx

ty

tx

k

k



© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

35

// Setup the execution configuration
dim3 dimGrid(1, 1);
dim3 dimBlock(Width, Width);

// Launch the device computation threads!
MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

Step 5: Kernel Invocation
(Host-side Code) 
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Only One Thread Block Used

• One Block of threads compute 
matrix Pd

– Each thread computes one 
element of Pd

• Each thread
– Loads a row of matrix Md
– Loads a column of matrix Nd
– Perform one multiply and 

addition for each pair of Md and 
Nd elements

– Compute to off-chip memory 
access ratio close to 1:1 (not very 
high) 

• Size of matrix limited by the 
number of threads allowed in a 
thread block

Grid 1

Block 1

3 2 5 4

2

4

2

6

48

Thread
(2, 2) 

WIDTH

Md Pd

Nd
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Step 7: Handling Arbitrary Sized Square 
Matrices

• Have each 2D thread block to compute 
a (TILE_WIDTH)2 sub-matrix (tile) of 
the result matrix
– Each has (TILE_WIDTH)2 threads

• Generate a 2D Grid of 
(WIDTH/TILE_WIDTH)2 blocks

Md

Nd

Pd

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

ty

tx

by

bx

You still need to put a loop 
around the kernel call for cases 
where WIDTH/TILE_WIDTH 
is greater than max grid size 
(64K)!

TILE_WIDTH
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Some Useful Information on
Tools
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Compiling a CUDA Program

NVCC

C/C++ CUDA
Application

PTX to Target
Compiler

G80 … GPU 

Target code

PTX CodeVirtual

Physical

CPU Code

• Parallel Thread 
eXecution (PTX) 
– Virtual Machine 

and ISA
– Programming 

model
– Execution 

resources and 
state

float4 me = gx[gtid];
me.x += me.y * me.z;

ld.global.v4.f32  {$f1,$f3,$f5,$f7}, [$r9+0];
mad.f32           $f1, $f5, $f3, $f1;
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Compilation

• Any source file containing CUDA language 
extensions must be compiled with NVCC

• NVCC is a compiler driver
– Works by invoking all the necessary tools and 

compilers like cudacc, g++, cl, ...

• NVCC outputs:
– C code (host CPU Code) 

• Must then be compiled with the rest of the application using another tool

– PTX
• Object code directly

• Or, PTX source, interpreted at runtime
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Linking

• Any executable with CUDA code requires two 
dynamic libraries:
– The CUDA runtime library (cudart) 

– The CUDA core library (cuda) 
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Debugging Using the
Device Emulation Mode

• An executable compiled in device emulation mode
(nvcc -deviceemu) runs completely on the host 
using the CUDA runtime
– No need of any device and CUDA driver
– Each device thread is emulated with a host thread

• Running in device emulation mode, one can:
– Use host native debug support (breakpoints, inspection, etc.) 
– Access any device-specific data from host code and vice-versa
– Call any host function from device code (e.g. printf) and vice-

versa
– Detect deadlock situations caused by improper usage of 

__syncthreads



© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

43

Device Emulation Mode Pitfalls
• Emulated device threads execute sequentially, so 

simultaneous accesses of the same memory location 
by multiple threads could produce different results.

• Dereferencing device pointers on the host or host 
pointers on the device can produce correct results in 
device emulation mode, but will generate an error in 
device execution mode
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Floating Point

• Results of floating-point computations will slightly 
differ because of:
– Different compiler outputs, instruction sets

– Use of extended precision for intermediate results
• There are various options to force strict single precision on the host


