
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

1

ECE 498AL

Lecture 2:
The CUDA Programming Model

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

2

What is (Historical) GPGPU ?

• General Purpose computation using GPU and graphics API in
applications other than 3D graphics
– GPU accelerates critical path of application

• Data parallel algorithms leverage GPU attributes
– Large data arrays, streaming throughput

– Fine-grain SIMD parallelism

– Low-latency floating point (FP) computation

• Applications – see //GPGPU.org
– Game effects (FX) physics, image processing

– Physical modeling, computational engineering, matrix algebra,
convolution, correlation, sorting

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

3

Previous GPGPU Constraints
• Dealing with graphics API

– Working with the corner cases of the
graphics API

• Addressing modes
– Limited texture size/dimension

• Shader capabilities
– Limited outputs

• Instruction sets
– Lack of Integer & bit ops

• Communication limited
– Between pixels

– Scatter a[i] = p

Input Registers

Fragment Program

Output Registers

Constants

Texture

Temp Registers

per thread
per Shader
per Context

FB Memory

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

4

CUDA

• “Compute Unified Device Architecture”

• General purpose programming model
– User kicks off batches of threads on the GPU

– GPU = dedicated super-threaded, massively data parallel co-processor

• Targeted software stack
– Compute oriented drivers, language, and tools

• Driver for loading computation programs into GPU
– Standalone Driver - Optimized for computation

– Interface designed for compute – graphics-free API

– Data sharing with OpenGL buffer objects

– Guaranteed maximum download & readback speeds

– Explicit GPU memory management

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

5

An Example of Physical Reality
Behind CUDA

CPU
(host)

GPU w/
local DRAM

(device)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

6

Parallel Computing on a GPU

• 8-series GPUs deliver 25 to 200+ GFLOPS
on compiled parallel C applications
– Available in laptops, desktops, and clusters

• GPU parallelism is doubling every year
• Programming model scales transparently

• Programmable in C with CUDA tools
• Multithreaded SPMD model uses application

data parallelism and thread parallelism

GeForce 8800

Tesla S870

Tesla D870

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

7

Overview

• CUDA programming model – basic concepts and
data types

• CUDA application programming interface - basic

• Simple examples to illustrate basic concepts and
functionalities

• Performance features will be covered later

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

8

CUDA – C with no shader limitations!
• Integrated host+device app C program

– Serial or modestly parallel parts in host C code

– Highly parallel parts in device SPMD kernel C code

Serial Code (host)

. . .

. . .

Parallel Kernel (device)

KernelA<<< nBlk, nTid >>>(args);

Serial Code (host)

Parallel Kernel (device)

KernelB<<< nBlk, nTid >>>(args);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

9

CUDA Devices and Threads

• A compute device
– Is a coprocessor to the CPU or host

– Has its own DRAM (device memory)

– Runs many threads in parallel

– Is typically a GPU but can also be another type of parallel processing
device

• Data-parallel portions of an application are expressed as device
kernels which run on many threads

• Differences between GPU and CPU threads
– GPU threads are extremely lightweight

• Very little creation overhead

– GPU needs 1000s of threads for full efficiency
• Multi-core CPU needs only a few

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

10

L2

FB

SP SP

L1

TF

T
h

re
a

d
 P

ro
c

es
s

o
r

Vtx Thread Issue

Setup / Rstr / ZCull

Geom Thread Issue Pixel Thread Issue

Input Assembler

Host

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

L2

FB

L2

FB

L2

FB

L2

FB

L2

FB

• The future of GPUs is programmable processing

• So – build the architecture around the processor

G80 – Graphics Mode

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

11

G80 CUDA mode – A Device Example
• Processors execute computing threads

• New operating mode/HW interface for computing

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Load/store Load/store Load/store Load/store Load/store

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

12

Extended C
• Declspecs

– global, device, shared,
local, constant

• Keywords
– threadIdx, blockIdx

• Intrinsics
– __syncthreads

• Runtime API
– Memory, symbol,

execution management

• Function launch

__device__ float filter[N];

__global__ void convolve (float *image) {

__shared__ float region[M];
...

region[threadIdx] = image[i];

__syncthreads()
...

image[j] = result;
}

// Allocate GPU memory
void *myimage = cudaMalloc(bytes)

// 100 blocks, 10 threads per block
convolve<<<100, 10>>> (myimage);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

13

gcc / cl

G80 SASS
foo.sass

OCG

Extended C

cudacc
EDG C/C++ frontend

Open64 Global Optimizer

GPU Assembly
foo.s

CPU Host Code
foo.cpp

Integrated source
(foo.cu)

Mark Murphy, “NVIDIA’s Experience with
Open64,”
www.capsl.udel.edu/conferences/open64/2008
/Papers/101.doc

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

14

Arrays of Parallel Threads

• A CUDA kernel is executed by an array of
threads
– All threads run the same code (SPMD)
– Each thread has an ID that it uses to compute

memory addresses and make control decisions

76543210

…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

threadID

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

15

…
float x =
input[threadID];
float y = func(x);
output[threadID] = y;
…

threadID

Thread Block 0

…
…
float x =
input[threadID];
float y = func(x);
output[threadID] = y;
…

Thread Block 0

…
float x =
input[threadID];
float y = func(x);
output[threadID] = y;
…

Thread Block N - 1

Thread Blocks: Scalable Cooperation

• Divide monolithic thread array into multiple blocks
– Threads within a block cooperate via shared memory,

atomic operations and barrier synchronization

– Threads in different blocks cannot cooperate

76543210 76543210 76543210

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

16

Host

Kernel
1

Kernel
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(0, 1)

Block
(1, 1)

Grid 2

Courtesy: NDVIA

Block (1, 1)

Thread
(0,1,0)

Thread
(1,1,0)

Thread
(2,1,0)

Thread
(3,1,0)

Thread
(0,0,0)

Thread
(1,0,0)

Thread
(2,0,0)

Thread
(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

Block IDs and Thread IDs

• Each thread uses IDs to decide
what data to work on
– Block ID: 1D or 2D
– Thread ID: 1D, 2D, or 3D

• Simplifies memory
addressing when processing
multidimensional data
– Image processing
– Solving PDEs on volumes
– …

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

17

CUDA Memory Model Overview

• Global memory
– Main means of

communicating R/W
Data between host and
device

– Contents visible to all
threads

– Long latency access

• We will focus on global
memory for now
– Constant and texture

memory will come later

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

18

CUDA API Highlights:
Easy and Lightweight

• The API is an extension to the ANSI C programming
language

Low learning curve

• The hardware is designed to enable lightweight
runtime and driver

High performance

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

19

CUDA Device Memory Allocation

• cudaMalloc()
– Allocates object in the

device Global MemoryGlobal Memory

– Requires two parameters
• Address of a pointer to the

allocated object

• Size of of allocated object

• cudaFree()
– Frees object from device

Global Memory
• Pointer to freed object

Grid

Global
Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

20

CUDA Device Memory Allocation (cont.)

• Code example:
– Allocate a 64 * 64 single precision float array

– Attach the allocated storage to Md

– “d” is often used to indicate a device data structure

TILE_WIDTH = 64;
Float* Md
int size = TILE_WIDTH * TILE_WIDTH * sizeof(float);

cudaMalloc((void**)&Md, size);
cudaFree(Md);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

21

CUDA Host-Device Data Transfer

• cudaMemcpy()
– memory data transfer

– Requires four parameters
• Pointer to destination

• Pointer to source

• Number of bytes copied

• Type of transfer

– Host to Host

– Host to Device

– Device to Host

– Device to Device

• Asynchronous transfer

Grid

Global
Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

22

CUDA Host-Device Data Transfer
(cont.)

• Code example:
– Transfer a 64 * 64 single precision float array

– M is in host memory and Md is in device memory

– cudaMemcpyHostToDevice and
cudaMemcpyDeviceToHost are symbolic constants

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMemcpy(M, Md, size, cudaMemcpyDeviceToHost);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

23

CUDA Keywords

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

24

CUDA Function Declarations

hosthost__host__ float HostFunc()

hostdevice__global__ void KernelFunc()

devicedevice__device__ float DeviceFunc()

Only callable
from the:

Executed
on the:

• __global__ defines a kernel function
– Must return void

• __device__ and __host__ can be used
together

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

25

CUDA Function Declarations (cont.)

• __device__ functions cannot have their
address taken

• For functions executed on the device:
– No recursion

– No static variable declarations inside the function

– No variable number of arguments

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

26

Calling a Kernel Function – Thread Creation

• A kernel function must be called with an execution
configuration:

__global__ void KernelFunc(...);

dim3 DimGrid(100, 50); // 5000 thread blocks

dim3 DimBlock(4, 8, 8); // 256 threads per
block

size_t SharedMemBytes = 64; // 64 bytes of shared
memory

KernelFunc<<< DimGrid, DimBlock, SharedMemBytes
>>>(...);

• Any call to a kernel function is asynchronous from
CUDA 1.0 on, explicit synch needed for blocking

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

27

A Simple Running Example
Matrix Multiplication

• A simple matrix multiplication example that illustrates
the basic features of memory and thread management
in CUDA programs
– Leave shared memory usage until later

– Local, register usage

– Thread ID usage

– Memory data transfer API between host and device

– Assume square matrix for simplicity

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

28

Programming Model:
Square Matrix Multiplication Example

• P = M * N of size WIDTH x WIDTH

• Without tiling:
– One thread calculates one element of P

– M and N are loaded WIDTH times from
global memory

M

N

P

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

29

M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

M1,3M0,3 M2,3 M3,3

M

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

30

Step 1: Matrix Multiplication
A Simple Host Version in C

M

N

P

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

// Matrix multiplication on the (CPU) host in double precision
void MatrixMulOnHost(float* M, float* N, float* P, int Width)
{

for (int i = 0; i < Width; ++i)
for (int j = 0; j < Width; ++j) {

double sum = 0;
for (int k = 0; k < Width; ++k) {

double a = M[i * width + k];
double b = N[k * width + j];
sum += a * b;

}
P[i * Width + j] = sum;

}
}

i

k

k

j

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

31

void MatrixMulOnDevice(float* M, float* N, float* P, int Width)

{
int size = Width * Width * sizeof(float);
float* Md, Nd, Pd;
…

1. // Allocate and Load M, N to device memory
cudaMalloc(&Md, size);
cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMalloc(&Nd, size);
cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);

// Allocate P on the device
cudaMalloc(&Pd, size);

Step 2: Input Matrix Data Transfer
(Host-side Code)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

32

Step 3: Output Matrix Data Transfer
(Host-side Code)

2. // Kernel invocation code – to be shown later
…

3. // Read P from the device
cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);

// Free device matrices
cudaFree(Md); cudaFree(Nd); cudaFree (Pd);
}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

33

Step 4: Kernel Function

// Matrix multiplication kernel – per thread code

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{

// Pvalue is used to store the element of the matrix
// that is computed by the thread
float Pvalue = 0;

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

34

Nd

Md Pd

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

Step 4: Kernel Function (cont.)

for (int k = 0; k < Width; ++k) {
float Melement = Md[threadIdx.y*Width+k];
float Nelement = Nd[k*Width+threadIdx.x];
Pvalue += Melement * Nelement;

}

Pd[threadIdx.y*Width+threadIdx.x] = Pvalue;
}

ty

tx

ty

tx

k

k

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

35

// Setup the execution configuration
dim3 dimGrid(1, 1);
dim3 dimBlock(Width, Width);

// Launch the device computation threads!
MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

Step 5: Kernel Invocation
(Host-side Code)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

36

Only One Thread Block Used

• One Block of threads compute
matrix Pd

– Each thread computes one
element of Pd

• Each thread
– Loads a row of matrix Md
– Loads a column of matrix Nd
– Perform one multiply and

addition for each pair of Md and
Nd elements

– Compute to off-chip memory
access ratio close to 1:1 (not very
high)

• Size of matrix limited by the
number of threads allowed in a
thread block

Grid 1

Block 1

3 2 5 4

2

4

2

6

48

Thread
(2, 2)

WIDTH

Md Pd

Nd

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

37

Step 7: Handling Arbitrary Sized Square
Matrices

• Have each 2D thread block to compute
a (TILE_WIDTH)2 sub-matrix (tile) of
the result matrix
– Each has (TILE_WIDTH)2 threads

• Generate a 2D Grid of
(WIDTH/TILE_WIDTH)2 blocks

Md

Nd

Pd

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

ty

tx

by

bx

You still need to put a loop
around the kernel call for cases
where WIDTH/TILE_WIDTH
is greater than max grid size
(64K)!

TILE_WIDTH

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

38

Some Useful Information on
Tools

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

39
39

Compiling a CUDA Program

NVCC

C/C++ CUDA
Application

PTX to Target
Compiler

G80 … GPU

Target code

PTX CodeVirtual

Physical

CPU Code

• Parallel Thread
eXecution (PTX)
– Virtual Machine

and ISA
– Programming

model
– Execution

resources and
state

float4 me = gx[gtid];
me.x += me.y * me.z;

ld.global.v4.f32 {$f1,$f3,$f5,$f7}, [$r9+0];
mad.f32 $f1, $f5, $f3, $f1;

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

40
40

Compilation

• Any source file containing CUDA language
extensions must be compiled with NVCC

• NVCC is a compiler driver
– Works by invoking all the necessary tools and

compilers like cudacc, g++, cl, ...

• NVCC outputs:
– C code (host CPU Code)

• Must then be compiled with the rest of the application using another tool

– PTX
• Object code directly

• Or, PTX source, interpreted at runtime

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

41

Linking

• Any executable with CUDA code requires two
dynamic libraries:
– The CUDA runtime library (cudart)

– The CUDA core library (cuda)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

42

Debugging Using the
Device Emulation Mode

• An executable compiled in device emulation mode
(nvcc -deviceemu) runs completely on the host
using the CUDA runtime
– No need of any device and CUDA driver
– Each device thread is emulated with a host thread

• Running in device emulation mode, one can:
– Use host native debug support (breakpoints, inspection, etc.)
– Access any device-specific data from host code and vice-versa
– Call any host function from device code (e.g. printf) and vice-

versa
– Detect deadlock situations caused by improper usage of

__syncthreads

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

43

Device Emulation Mode Pitfalls
• Emulated device threads execute sequentially, so

simultaneous accesses of the same memory location
by multiple threads could produce different results.

• Dereferencing device pointers on the host or host
pointers on the device can produce correct results in
device emulation mode, but will generate an error in
device execution mode

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

44

Floating Point

• Results of floating-point computations will slightly
differ because of:
– Different compiler outputs, instruction sets

– Use of extended precision for intermediate results
• There are various options to force strict single precision on the host

