ECE 498AL Programming Massively Parallel Processors Lecture 1: Introduction

Course Goals

- Learn how to program massively parallel processors and achieve
 - high performance
 - functionality and maintainability
 - scalability across future generations
- Acquire technical knowledge required to achieve the above goals
 - principles and patterns of parallel programming
 - processor architecture features and constraints
 - programming API, tools and techniques

People

- Professors:
 - Wen-mei Hwu

215 CSL, w-hwu@uiuc.edu, 244-8270

use ECE498AL to start your e-mail subject line

Office hours: 2-3:30pm Wednesdays; or after class

David Kirk

Chief Scientist, NVIDIA and Professor of ECE

• Teaching Assistant:

ece498alTA@gmail.com

John Stratton (stratton@uiuc.edu)

Office hours: TBA

Web Resources

- Web site: http://courses.ece.uiuc.edu/ece498/al
 - Handouts and lecture slides/recordings
 - Textbook, documentation, software resources
 - <u>Note</u>: While we'll make an effort to post announcements on the web, we can't guarantee it, and won't make any allowances for people who miss things in class.
- Web board
 - Channel for electronic announcements
 - Forum for Q&A the TAs and Professors read the board, and your classmates often have answers
- Compass grades

Grading

This is a lab oriented course!

- Exam5: 20%
- Labs: 30%
 - Demo/knowledge: 25%
 - Functionality: 40%
 - Report: 35%
- Project: 50%
 - Design Document: 25%
 - Project Presentation: 25%
 - Demo/Final Report: 50%

Bonus Days

- Each of you get five bonus days
 - A bonus day is a no-questions-asked one-day extension that can be used on most assignments
 - You can't turn in multiple versions of a team assignment on different days; all of you must combine individual bonus days into one team bonus day.
 - You can use multiple bonus days on the same thing
 - Weekends/holidays don't count for the number of days of extension (Friday-Monday is one day extension)
- Intended to cover illnesses, interview visits, just needing more time, etc.

Using Bonus Days

- Web page has a bonus day form. Print it out, sign, and attach to the thing you're turning in.
 - Everyone who's using a bonus day on an team assignment needs to sign the form
- Penalty for being late beyond bonus days is 10% of the possible points/day, again counting only weekdays (Spring/Fall break counts as weekdays)
- Things you can't use bonus days on:
 - Final project design documents, final project presentations, final project demo, exam

Academic Honesty

- You are allowed and encouraged to discuss assignments with other students in the class. Getting verbal advice/help from people who've already taken the course is also fine.
- Any reference to assignments from previous terms or web postings is unacceptable
- Any copying of non-trivial code is unacceptable
 - Non-trivial = more than a line or so
 - Includes reading someone else's code and then going off to write your own.

Academic Honesty (cont.)

- Giving/receiving help on an exam is unacceptable
- Penalties for academic dishonesty:
 - Zero on the assignment for the first occasion
 - Automatic failure of the course for repeat offenses

Team Projects

- Work can be divided up between team members in any way that works for you
- However, each team member will demo the final checkpoint of each MP individually, and will get a separate demo grade
 - This will include questions on the entire design
 - Rationale: if you don't know enough about the whole design to answer questions on it, you aren't involved enough in the MP

Lab Equipment

- Your own PCs running G80 emulators
 - Better debugging environment
 - Sufficient for first couple of weeks
- NVIDIA G80/G280 boards
 - QP/AC x86/GPU cluster accounts
 - Much much faster but less debugging support

UIUC/NCSA QP Cluster

- 16 nodes
 - 4-GPU (G80, 2 Quadro), 1-FPGA
 Opteron node at NCSA
 - GPUs donated by NVIDIA
 - FPGA donated by Xilinx
- Coulomb Summation:
 - 1.16 TFLOPS/node
 - 176x speedup vs. Intel QX6700 CPU core w/ SSE
- A large user community
 - QP has completed ~27,000 jobs and ~14,000 job hours since it began operation in May 2008
 - Urbana semester course, summer school
 - Many research accounts, many new requests

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 ECE 498AL, University of Illinois, Urbana-Champaign

UIUC/NCSA QP Cluster

http://www.ncsa.uiuc.edu/Projects/GPUcluster/

A partnership between NCSA and academic departments.

UIUC/NCSA AC Cluster

- 32 nodes
 - 4-GPU (GTX280, Tesla),
 1-FPGA Opteron node at NCSA
 - GPUs donated by NVIDIA
 - FPGA donated by Xilinx
- Coulomb Summation:
 - 1.78 TFLOPS/node
 - 271x speedup vs. Intel QX6700 CPU core w/ SSE

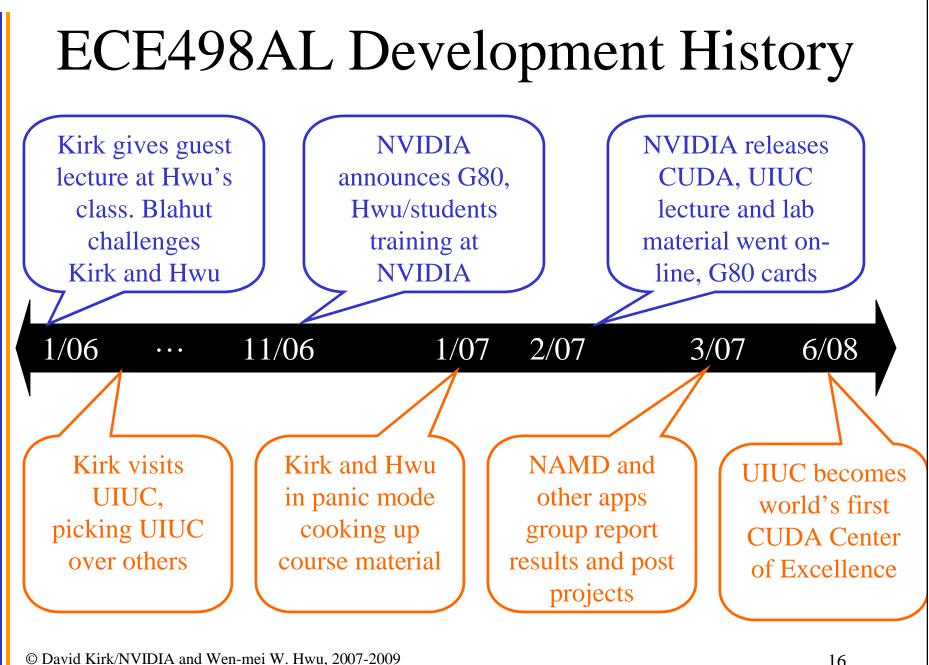
UIUC/NCSA QP Cluster

http://www.ncsa.uiuc.edu/Projects/GPUcluster/

A partnership between NCSA and academic departments.

Text/Notes

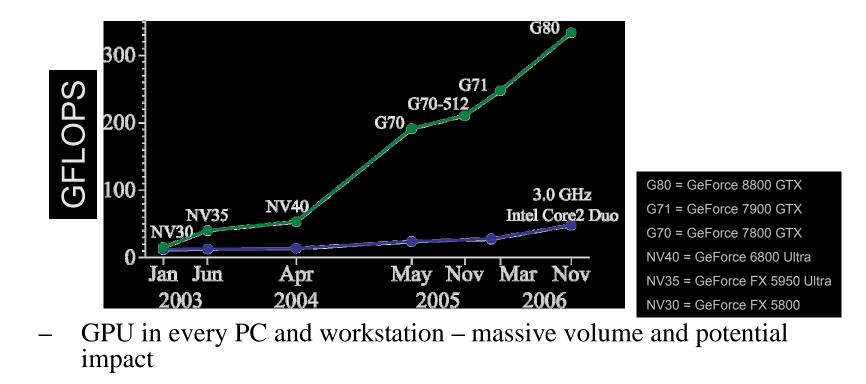
- 1. Draft textbook by Prof. Hwu and Prof. Kirk available at the website
- 2. NVIDIA, *NVidia CUDA Programming Guide*, NVidia, 2007 (reference book)
- T. Mattson, et al "Patterns for Parallel Programming," Addison Wesley, 2005 (recomm.)
- 4. Lecture notes and recordings will be posted at the class web site

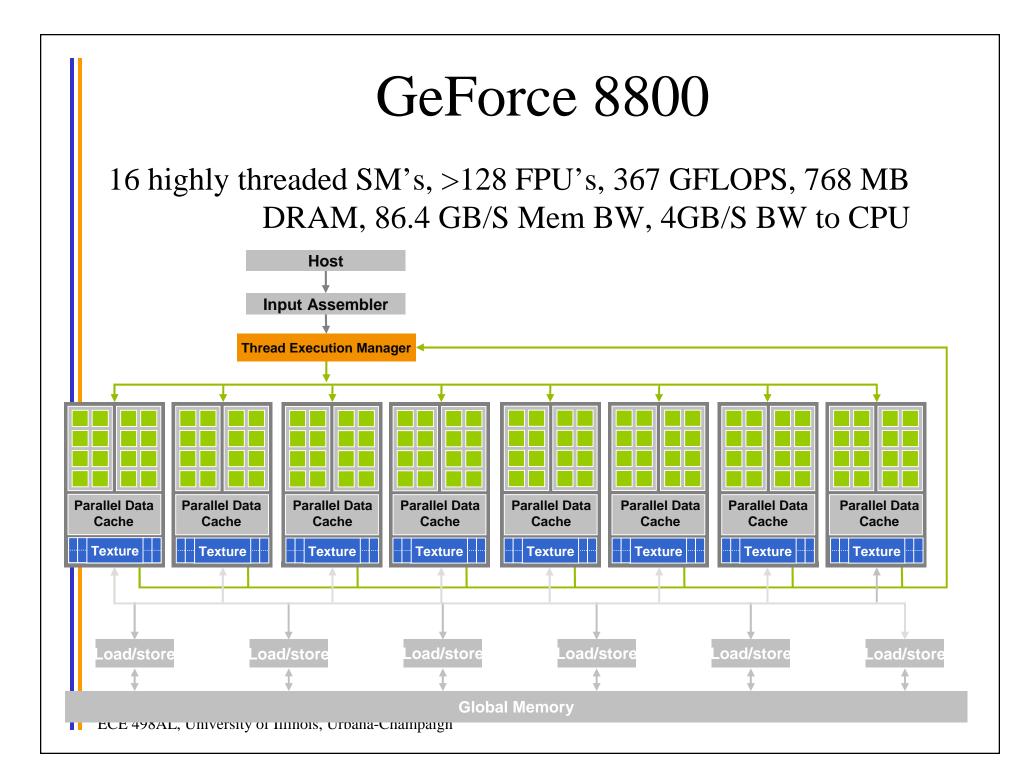

Tentative Schedule/Make-up Classes

• Regular make-up classes

- Wed, 5:10-6:30 during selected weeks, location TBD
- Week 1:
 - Tue, 1/20 : Lecture 1: Introduction
 - Thu, 1/22: Lecture 2 GPU Computing and CUDA Intro
 - MP-0, installation, run hello world
- Week 2:
 - Tue, 1/27: Lecture 3 GPU Computing and CUDA Intro
 - Thu, 1/29: Lecture 4 CUDA threading model
 - MP-1, simple matrix multiplication and simple vector reduction

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 ECE 498AL, University of Illinois, Urbana-Champaign • Week 3:


- Tue, 2/3: Lecture 5 CUDA memory model
- Thu, 2/5: Lecture 6 CUDA memory model, tiling
- MP-2, tiled matrix multiplication
- Week 4
 - Tue, 2/10: Lecture 7 CUDA computing history, Hardware
 - Thu, 2/12: Lecture 8 CUDA performance
 - MP-3, simple and tiled 2D convolution



ECE 498AL, University of Illinois, Urbana-Champaign

Why Massively Parallel Processor

- A quiet revolution and potential build-up
 - Calculation: 367 GFLOPS vs. 32 GFLOPS
 - Memory Bandwidth: 86.4 GB/s vs. 8.4 GB/s
 - Until last year, programmed through graphics API

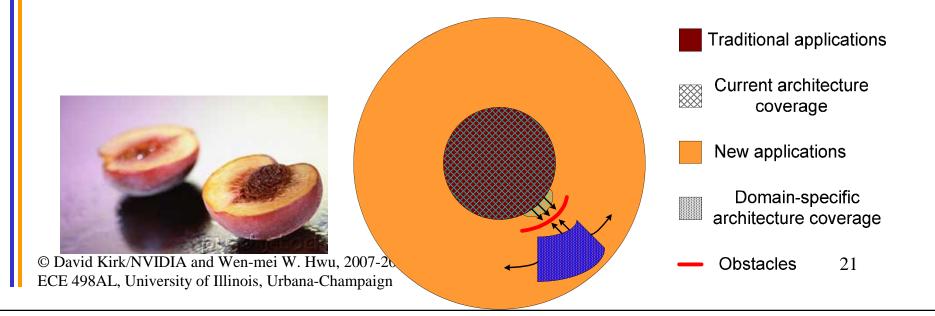
G80 Characteristics

- 367 GFLOPS peak performance (25-50 times of current high-end microprocessors)
- 265 GFLOPS sustained for apps such as VMD
- Massively parallel, 128 cores, 90W
- Massively threaded, sustains 1000s of threads per app
- 30-100 times speedup over high-end microprocessors on scientific and media applications: medical imaging, molecular dynamics

"I think they're right on the money, but the huge performance differential (currently 3 GPUs ~= 300 SGI Altix Itanium2s) will invite close scrutiny so I have to be careful what I say publically until I triple check those numbers." -John Stone, VMD group, Physics UIUC

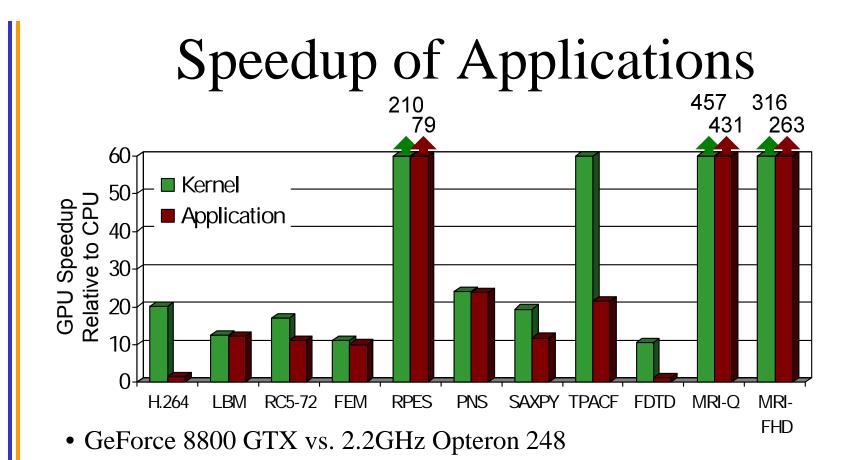
Future Apps Reflect a Concurrent World

- Exciting applications in future mass computing market have been traditionally considered "supercomputing applications"
 - Molecular dynamics simulation, Video and audio coding and manipulation, 3D imaging and visualization, Consumer game physics, and virtual reality products
 - -These "Super-apps" represent and model physical, concurrent world
- Various granularities of parallelism exist, but...
 - programming model must not hinder parallel implementation
 - data delivery needs careful management


Stretching Traditional Architectures

• Traditional parallel architectures cover some super-applications

- DSP, GPU, network apps, Scientific


• The game is to grow mainstream architectures "out" or domain-specific architectures "in"

- CUDA is latter

Previous Projects

	Application	Description	Source	Kernel	% time
]	H.264	SPEC '06 version, change in guess vector	34,811	194	35%
]	LBM	SPEC '06 version, change to single precision and print fewer reports	1,481	285	>99%
]	RC5-72	Distributed.net RC5-72 challenge client code	1,979	218	>99%
]	FEM	Finite element modeling, simulation of 3D graded materials	1,874	146	99%
]	RPES	Rye Polynomial Equation Solver, quantum chem, 2-electron repulsion	1,104	281	99%
]	PNS	Petri Net simulation of a distributed system	322	160	>99%
•	SAXPY	Single-precision implementation of saxpy, used in Linpack's Gaussian elim. routine	952	31	>99%
r	FRACF	Two Point Angular Correlation Function	536	98	96%
]	FDTD	Finite-Difference Time Domain analysis of 2D electromagnetic wave propagation	1,365	93	16%
]		Computing a matrix Q, a scanner's A codflygn and WinHMR P902 construction by of Hinois, Urbana-Champaign	490	33	> 99%

- 10× speedup in a kernel is typical, as long as the kernel can occupy enough parallel threads
- $25 \times$ to $400 \times$ speedup if the function's data requirements and control flow suit the GPU and the application is optimized
- "Need for Speed" Seminar Series organized by Patel and Hwu this semester.