Exercise for PN Junction Lab:

Long vs. Short Diode

The forward biased *I-V* characteristics of real p-n diodes are affected by generation-recombination mechanisms in the depletion region, by the high injection and the series resistance of the diode. They are also affected by the length of the n- and p-regions. In another exercise you have the opportunity to investigate generation-recombination, high level injection and series resistance effect. The purpose of this exercise is to examine the behavior of long and short diodes. The doping of the p- and n-regions is N_A = 10^{18} cm⁻³ and N_D = 10^{14} cm⁻³. The user is required to vary the minority carrier lifetime such that:

(a)
$$\tau_n = \tau_p = 1 \mu s$$
 (b) $\tau_n = \tau_p = 0.1 \mu s$

For each of the two values for the minority carrier lifetimes, vary the length of the n-region. For that purpose consider n-region lengths of 0.2, 0.5, 1 and 5 μ m. Comment on the results obtained and try to explain the diode behavior starting from general mathematical expressions for the diode. Vary the anode voltage from $V_A=0$ V to $V_A=1$ V.