

ECE606: Solid State Devices Lecture 29: BJT Design (II)

Muhammad Ashraful Alam alam@purdue.edu

Outline

1) Problems of classical transistor

- 2) Poly-Si emitter
- 3) Short base transport
- 4) High frequency response
- 5) Conclusions

REF: SDF, Chapter 11 and 12

Topic	Мар
-------	-----

	Equilibrium	DC	Small signal	Large Signal	Circuits
Diode					
Schottky					
BJT/HBT					
MOS					

Doping for Gain $\beta_{dc} \approx \frac{D_n}{W_B} \frac{W_E}{D_n} \frac{n_{i,B}^2}{n_{i,E}^2} \frac{N_E}{N_B}$ **Emitter doping:** As high as possible without band gap narrowing **Base doping:** As low as possible, without current crowding, Early effect N_{E} **Collector doping:** Lower than base doping without Kirk Effect N_B Base Width: As thin as possible without punch through N_{C}

Alam ECE-606 S09

Poly-silicon Emitter

Gain in Poly-silicon Transistor

$$I_{p,E,poly} = -qp_1 \frac{\upsilon_s \times D_p / W_E}{D_p / W_E + \upsilon_s} = I_{p,B,poly}$$

$$I_{p,E,si} = -q \left(D_p / W_E \right) p_1$$

$$\frac{I_{p,B,poly}}{I_{p,B,si}} = \frac{\upsilon_s}{D_p / W_E + \upsilon_s} \approx \frac{I_{B,poly}}{I_{B,si}}$$

$$\beta_{poly} = \frac{I_C}{I_{B,poly}} = \left(\frac{I_C}{I_{B,si}} \right) \times \left[\frac{I_{B,si}}{I_{B,poly}} \right] \approx \left(\frac{D_n W_E}{W_B} \frac{n_{i,B}^2}{n_{i,E}^2} \frac{N_E}{N_B} \right) \times \left[\frac{D_p / W_E + \upsilon_s}{\upsilon_s} \right]$$

$$\rightarrow \frac{D_n n_{i,B}^2}{W_B n_{i,E}^2} \frac{N_E}{N_B} \times \frac{1}{\upsilon_s} \quad (\because \upsilon_s << D_p / W_E)$$
Poly suppresses base current, increases gain ...
Alam ECE-606 509

8

Outline

- 1) Problems of classical transistor
- 2) Poly-Si emitter
- 3) Short base transport
- 4) High frequency response
- 5) Conclusions

Short-base Quasi-ballistic Transistor

$$I_{n,E} = -qD_n \frac{n_1 - n_2}{W_B} = -qU_{th}n_2$$

Gain in short-base Poly-silicon Transistor

$$\frac{I_{p,B,poly}}{I_{p,B,si}} = \frac{\upsilon_s}{D_p/W_E + \upsilon_s} \approx \frac{I_{B,poly}}{I_{B,si}} \qquad \frac{I_{n,E,ballistic}}{I_{n,E,si}} = \frac{\upsilon_{th}}{D_n/W_B + \upsilon_{th}}$$

$$\beta_{poly,ballistic} = \frac{I_{C,ballistic}}{I_{B,poly}} = \left[\frac{I_{C,ballistic}}{I_{C,si}}\right] \times \left[\frac{I_{C,si}}{I_{B,si}}\right] \times \left[\frac{I_{B,si}}{I_{B,poly}}\right]$$

$$\approx \left[\frac{\upsilon_{th}}{D_n/W_B + \upsilon_{th}}\right] \times \left[\frac{D_n W_E n_{i,B}^2 N_E}{W_B D_p n_{i,E}^2 N_B}\right] \times \left[\frac{D_p/W_E + \upsilon_s}{\upsilon_s}\right]$$

$$\rightarrow \frac{n_{i,B}^2}{n_{i,E}^2} \times \frac{N_E}{N_B} \times \frac{\upsilon_{th}}{\upsilon_s}$$

Quasi-Ballistic transport in very short base limits the gain ...

Outline

- 1) Problems of classical transistor
- 2) Poly-Si emitter
- 3) Short base transport
- 4) High frequency response
- 5) Conclusions

Торіс Мар

	Equilibrium	DC	Small signal	Large Signal	Circuits
Diode					
Schottky					
BJT/HBT					
MOS					

High Erequency Metrics

$$f_{area}(x) = \frac{1}{2\pi f_T} = \frac{W_B^2}{2D_n} + \frac{W_{BC}}{2v_{sar}} + \frac{k_B T/q}{I_C} (C_{j,BE} + C_{j,BC}) + (R_{ex} + R_c)C_{cb}$$

$$(power-gain cutoff frequency, f_{max})$$

$$f_{max} = \sqrt{\frac{f_T}{8\pi R_{bb}C_{cbi}}}$$

Summary

We have discussed various modifications of the classical BJTs and explained why improvement of performance has become so difficult in recent years.

The small signal analysis illustrates the importance of reduced junction capacitance, resistances, and transit times.

Classical **homojunctions** BJTs can only go so far, further improvement is possible with **heterojunction** bipolar transistors.

Aside:

On Base-Collector Breakdown Voltages

