

ECE606: Solid State Devices Lecture 27: Introduction to Bipolar Transistors

Muhammad Ashraful Alam alam@purdue.edu

Alam ECE-606 S09

Point contact **Germanium** transistor (**your HW problem**!) Ralph Bray from Purdue missed the invention of transistors. Transistor research was also in advanced stages in Europe (radar).

Modern Bipolar Junction Transistors (BJTs)

Symbols and Convention

$$I_{C}+I_{B}+I_{E}=0$$

 $V_{EB}+V_{BC}+V_{CE}=0$

Outline

1) Equilibrium and forward band-diagram

- 2) Currents in bipolar junction transistors
- 3) Eber's Moll model
- 4) Conclusions

Topic	Мар
-------	-----

	Equilibrium	DC	Small signal	Large Signal	Circuits
Diode					
Schottky					
BJT/HBT					
MOS					

Band Diagram at Equilibrium

Outline

- 1) Equilibrium and forward band-diagram
- 2) Currents in bipolar junction transistors
- 3) Eber's Moll model
- 4) Conclusions

Торіс Мар

	Equilibrium	DC	Small signal	Large Signal	Circuits
Diode					
Schottky					
BJT/HBT					
MOS					

Band Diagram with Bias $\nabla \bullet D = q \left(p - n + N_D^+ - N_A^- \right)$ — Non-equilibrium $\frac{\partial n}{\partial t} = \frac{1}{a} \nabla \bullet \mathbf{J}_N - r_N + g_N$ $\mathbf{J}_{N} = qn\mu_{N}E + qD_{N}\nabla n$ DC dn/dt=0 Small signal dn/dt ~ jωtn $\frac{\partial p}{\partial t} = \frac{1}{q} \nabla \bullet \mathbf{J}_{P} - r_{P} + g_{P}$ Transient --- Charge control model $\mathbf{J}_{P} = qp\mu_{P}E - qD_{P}\nabla p$

Electrostatics in Equilibrium

Collector and Emitter Electron Current

18

Current-Voltage Characteristics

Outline

- 1) Equilibrium and forward band-diagram
- 2) Currents in bipolar junction transistors
- 3) Ebers Moll model
- 4) Conclusions

Conclusion

- The physics of BJT is most easily understood with reference to the physics of junction diodes.
- The equations can be encapsulated in simple equivalent circuit appropriate for dc, ac, and large signal applications.
- Design of transistors is far more complicated than this simple model suggests.
- For a terrific and interesting history of invention of bipolar transistor, read the book "Crystal Fire".