NCN

www.nanohub.org

EE-606: Solid State Devices Lecture 3: Elements of Quantum Mechanics

Muhammad Ashraful Alam alam@purdue.edu

Outline

1) Why do we need quantum physics
2) Quantum concepts
3) Formulation of quantum mechanics
4) Conclusions

Reference: Vol. 6, Ch. 1 (pages 23-32)

Do I really need Quantum Mechanics?

If it were large objects, like a skier skiing past a set of obstacles, Newton's mechanics would work fine, but in a micro-world

Carrier Density

Carrier number $=$ Number of states x filling factor

Chapters 2-3 Chapter 4

Total number of occupants
= Number of apartments X The fraction occupied

Outline

1) Why do we need quantum physics
2) Quantum concepts
3) Formulation of quantum mechanics
4) Conclusions

Four Quantum Concepts ..

- Blackbody Radiation
- Photoelectric Effect
- Bohr Atom
- Wave Particle Duality

(1) black-body radiation

Interpretation of Plank's Formula

$$
u(f, T)=u(\lambda, T) \frac{d \lambda}{d f} \sim \frac{1}{\lambda^{5}}\left[\frac{1}{e^{\beta / \lambda T}-1}\right] \frac{d \lambda}{d f} \quad \lambda=\frac{c}{f}
$$

$$
\sim f^{2} \times h f \times\left(\frac{1}{\mathrm{e}^{h f / k T}-1}\right)
$$

$$
E=h f \quad \mathrm{n}=1,2, \ldots \ldots \ldots \mathrm{~N}
$$

Recent Example: COBE Data

J.C. Mather, Astrophysics J., 1990.

Show that the cosmic background temperature is approximately 3K. Can you "see" this radiation?

(2) Photoelectric Effect

$$
\mathrm{E}=(\mathrm{hf}-\mathrm{W})
$$

Electrons

$$
q V_{R} \approx(1 / 2) m_{0} v^{2}=h f-W
$$

Absorption occurs in quanta as well, consistent with photons having $E=h f$

Origin of Quantizati--

$$
E_{m, n}=\text { const } \times\left(\frac{1}{m^{2}}-\frac{1}{n^{2}}\right)
$$

(3) Bohr Atom ..

Assume that angular momentum is quantized:

$$
\begin{aligned}
& L_{\mathbf{n}}=m_{0} v r_{\mathbf{n}}=\mathbf{n} \hbar \\
& v=n \hbar / m_{0} r_{n} \\
& \frac{m_{0} v^{2}}{r_{\mathbf{n}}}=\frac{q^{2}}{4 \pi \varepsilon_{0} r_{\mathbf{n}}^{2}} \\
& r_{\mathbf{n}}=\frac{4 \pi \varepsilon_{0}(\mathbf{n} \hbar)^{2}}{m_{0} q^{2}}
\end{aligned}
$$

$$
\mathbf{n}=1,2,3, \ldots
$$

(3) Bohr Atom (continued) ...

$$
\begin{aligned}
& r_{\mathbf{n}}=\frac{4 \pi \varepsilon_{0}(\mathbf{n} \hbar)^{2}}{m_{0} q^{2}} \\
& \text { K.E. }=\frac{1}{2} m_{0} v^{2}=\frac{1}{2}\left(q^{2} / 4 \pi \varepsilon_{0} r_{\mathbf{n}}\right)
\end{aligned}
$$

P.E. $=-q^{2} / 4 \pi \varepsilon_{0} r_{\mathrm{n}} \quad($ P.E. set $=0$ at $r=\infty)$
$E_{\mathbf{n}}=$ K.E. + P.E. $=-\frac{1}{2}\left(q^{2} / 4 \pi \varepsilon_{0} r_{\mathbf{n}}\right)$

$$
E_{\mathbf{n}}=-\frac{m_{0} q^{4}}{2\left(4 \pi \varepsilon_{0} \mathbf{n} \hbar\right)^{2}}=-\frac{13.6}{\mathbf{n}^{2}} \mathrm{eV} \quad E_{m, n}=\text { const } \times\left(\frac{1}{m^{2}}-\frac{1}{n^{2}}\right)
$$

(4) Wave-Particle Duality

Photons act both as wave and particle, what about electrons?

$$
\begin{aligned}
& E=\sqrt{m_{0}^{2} c^{4}+p^{2} c^{2}} \\
& h f=D C \quad m_{0}=0 \text { (photon rest mass) }
\end{aligned}
$$

$$
\begin{aligned}
p & =h f / c & & \\
& =h / \lambda & & (\text { because } c=\lambda f) \\
& =\hbar k & & (\text { because } k=2 \pi / \lambda)
\end{aligned}
$$

Outline

1) Why do we need quantum physics
2) Quantum concepts
3) Formulation of Schrodinger Equation
4) Conclusions

Schrodinger Equation for electrons

$$
\begin{gathered}
E=\sqrt{m_{0}^{2} c^{4}+p^{2} c^{2}} \approx m_{0} c^{2}\left[1+p^{2} c^{2} / 2 m_{0}^{2} c^{4}+\ldots\right] \\
E-m_{0} c^{2}=V+\left(p^{2} / 2 m_{0}\right) \\
\vdots \\
h=\hbar \omega=V+\left(\hbar^{2} k^{2} / 2 m_{0}\right)
\end{gathered}
$$

Schrodinger Equation (continued)

$$
\hbar \omega=\left(\hbar^{2} k^{2} / 2 m_{0}\right)+V
$$

Assume, $\quad \Psi(x, t)=A \exp (-i(\omega t-k x))$
$d \Psi / d t=-i \omega \Psi \quad$ and $d^{2} \Psi / d x^{2}=-k^{2} \Psi$

$$
i \hbar \frac{d \Psi}{d t}=\left(-\frac{\hbar^{2}}{2 m_{0}} \frac{d^{2} \Psi}{d x^{2}}\right)+V \Psi
$$

Conclusions

1. Given chemical composition and atomic arrangements, we can compute electron density by using quantum mechanics.
2. We discussed the origin of quantum mechanics experiments were inconsistent with the classical theory.
3. We saw how Schrodinger equation can arise as a consequence of quantization and relativity, but this is not a derivation.
4. We will solve some toy problems in the next class to get a feeling of how to use quantum mechanics.
