Optical Imaging
 Chapter 5 - Light Scattering

Gabriel Popescu

University of Illinois at Urbana-Champaign
 Beckman Institute

Quantitative Light Imaging Laboratory http://light.ece.uiuc.edu

Light Scattering from Homogeneous Media

- "Scattering" is a generic term for the interaction of radiation by potentials.
- Neutron scattering on mass (nuclei)
- X-ray scattering on charge (ē)
- Scattering of an electromagnetic field on "scattering potentials" i.e. dielectric homogeneous

5.1 Scattering on Simple Particles

- Direct Problem: given $n[\bar{r}]$, what is $E[\bar{s}]$?
- Inverse Problem: given $E[\bar{s}]$, what is $n[\bar{r}]$?
- This problem is more difficult but it provides a diagnostics tool

$$
\begin{equation*}
\bar{E}_{j}[r]=\bar{E}_{0} \cdot e^{i \cdot \bar{k} \cdot \bar{n}}=\text { plane move incident } ;|\bar{k}|=\frac{2 \pi}{\lambda} \tag{5.1}
\end{equation*}
$$

5.1 Scattering on Simple Particles

- Particles can be characterized by a complex dielectric constant

$$
\begin{align*}
& \varepsilon[\bar{r}]=\operatorname{Re}[\varepsilon[\bar{r}]]+i \operatorname{Im}[\varepsilon[\bar{r}]] \tag{5.2}\\
& \bar{\varepsilon}[\bar{r}]=n^{2}[\bar{r}] \tag{5.3}
\end{align*}
$$

- Recall:
- $\operatorname{Re}[\mathrm{n}] \rightarrow$ Refraction
- Im[n] \rightarrow Absorption
- The scattered "far" field ($R>\frac{d^{2}}{\lambda}$)

$$
\begin{equation*}
\bar{E}_{S}[\bar{r}]=\bar{E}_{0} \cdot \frac{e^{i \cdot k \cdot R}}{R} \cdot f[\bar{s}, \bar{i}] \tag{5.4}
\end{equation*}
$$

$f[\bar{s}, \bar{i}]=$ scattering amplitude
$=$ defines amplitude, phase, and polarization of the scattered field.

5.1 Scattering on Simple Particles

- Differential Cross section

$$
\begin{equation*}
\sigma_{d}[\bar{s}, \bar{i}]=\lim _{R \rightarrow \infty}\left[R^{2}\left|\frac{\overline{S_{s}}}{\overline{S_{i}}}\right|\right]=|f[\bar{s}, \bar{i}]|^{2} \tag{5.5}
\end{equation*}
$$

- Only defined in far-field
- \bar{S}_{i} and \bar{S}_{s} are the Pointing vectors (incident and scattered.)

$$
\left\{\begin{array}{l}
S_{i, s}=\frac{1}{2 \eta}\left|\bar{E}_{i, s}\right|^{2} \tag{5.6}\\
\eta=\sqrt{\frac{\mu}{\varepsilon}}=\text { impedance }\left(\eta_{\text {vacuum }}=377 \Omega\right)
\end{array}\right.
$$

- From (eq. 5.5) differential cross-section:

$$
\begin{align*}
\sigma_{b} & =\sigma_{d}[-\bar{i}, \bar{i}] \tag{5.7}\\
& =\text { back scattering section }
\end{align*}
$$

5.1 Scattering on Simple Particles

- Scattering Cross section

$$
\begin{equation*}
\sigma_{s}=\int_{4 \pi} \sigma_{d}[\bar{s}, \bar{i}] d \Omega \tag{5.8}
\end{equation*}
$$

$\left[\sigma_{s}\right]=m^{2}=$ area $=$ meaning of probability of scattering

- Phase Function

$$
\begin{align*}
& p[\bar{s}, \bar{i}]=4 \pi \frac{\sigma_{d}[\bar{s}, \bar{i}]}{\sigma}=4 \pi \frac{|f[\bar{s}, \bar{i}]|^{2}}{\sigma} \tag{5.9}\\
& \int p[\bar{s}, \bar{i}] d \Omega=4 \pi=\text { normailzation }
\end{align*}
$$

5.1 Scattering on Simple Particles

- In the presence of absorption

$$
\begin{equation*}
\sigma=\sigma_{a}+\sigma_{s}=\text { Total Cross Section Area } \tag{5.10}
\end{equation*}
$$

- Most of the time we use "spherical" particles approximation.
- Various regimes, depending on $\frac{a}{\lambda}$ and ($\mathrm{n}-1$): Rayleigh Scattering, Rayleigh-Gans, Mie
- Collection of particles: density is important
- Again regimes: single scattering, multiple scattering, and diffusion.

5.2 Rayleigh Scattering

- If $a \ll \lambda$, the dipole approximation works well
- Scattering Amplitude

$$
\varepsilon=n^{2}
$$

$$
\begin{equation*}
f[\bar{s}, \bar{i}]=\frac{k^{2}}{4 \pi}\left[\frac{3\left(\varepsilon_{r}-1\right)}{\varepsilon_{r}+2}\right] \cdot V \cdot[-\bar{s} \times(\bar{s} \times \bar{i})] \tag{5.11}
\end{equation*}
$$

- It describes the "doughnut" shape

isotropic in the
plane $\perp \bar{p}$

no radiation along \bar{p}

5.2 Rayleigh Scattering

- Question: is the sky polarized?

$$
\begin{equation*}
\sigma_{s}=\pi a^{2} \frac{8(k a)^{4}}{3} \cdot\left|\frac{\left(\varepsilon_{r}-1\right)}{\varepsilon_{r}+2}\right|^{2} \tag{5.12}
\end{equation*}
$$

- Note:

$$
\begin{gathered}
\sigma \sim k^{4}=\frac{2 \pi}{\lambda^{4}} \Rightarrow \text { small } \lambda \text { scatter more } \Rightarrow \text { blue } \\
\\
\sigma_{s} \sim a^{6}=V^{2}
\end{gathered}
$$

5.3 The Born Approximation

- Recall the Helmholtz equation (Chapter 2, eq. 2.50)

$$
\begin{align*}
& \nabla^{2} U[\bar{r}, \omega]+k^{2} n^{2}[\bar{r}, \omega] U[\bar{r}, \omega]=0 \\
& k=\frac{2 \pi}{\lambda} ; \quad \varepsilon=n^{2} \tag{5.13}
\end{align*}
$$

- Scalar eq. is good enough for our purpose
- The Scattering Potential

$$
\begin{equation*}
F[\bar{r}, \omega]=\frac{1}{4 \pi} k^{2} \cdot\left(n^{2}[\bar{r}, \omega]-1\right) \tag{5.14}
\end{equation*}
$$

=> Equation 5.13 can be rewritten:

$$
\begin{equation*}
\nabla^{2} U[\bar{r}, \omega]+k^{2} U[\bar{r}, \omega]=-4 \pi F[\bar{r}, \omega] \cdot U[\bar{r}, \omega] \tag{5.15}
\end{equation*}
$$

5.3 The Born Approximation

- Let's use the Fourier method for linear differential equations. Instead of (t, ω) domain, use space - spatial frequency domain, (\bar{r}, \bar{q}).
- Let's find the Green's function, i.e. impulse response in space domain. Space-Pulse $=\delta^{(3)}[\bar{r}]$
- The elementary equation becomes:

- Take the Fourier Transform w.r.t. \bar{r}

$$
\begin{equation*}
\Rightarrow-q^{2} \cdot H[\bar{q}, \omega]+k^{2} \cdot H[\bar{q}, \omega]=-1 \tag{5.17}
\end{equation*}
$$

5.3 The Born Approximation

- (Eq. 5.17 from last slide)

$$
\begin{align*}
& \Rightarrow-q^{2} \cdot H[\bar{q}, \omega]+k^{2} \cdot H[\bar{q}, \omega]=-1 \tag{5.17}\\
& \Rightarrow H[\bar{q}, \omega]=\frac{1}{q^{2}-k^{2}} \tag{5.18}
\end{align*}
$$

- $\mathrm{H}=$ transfer function $=>$ impulse response.

$$
\left\{\begin{array}{l}
h[\bar{r}, \omega]=F\{H[\bar{q}, \omega]\} \\
\Rightarrow h[\bar{r}, \omega]=A \cdot \frac{e^{i k \cdot|\bar{r}|}}{|\bar{r}|} \tag{5.19}
\end{array}\right.
$$

- This is the Spherical Wavelet we used in diffraction (section 3.11)

5.3 The Born Approximation

- Scattering and diffraction are essentially the same thing : the interaction of light with a (usually small) object.
- So the solution of (eq. 5.15) is a convolution of the impulse response with $F[\bar{r}, \omega] \cdot U[\bar{r}, \omega]$:

$$
\begin{array}{r}
U^{(S)}[\bar{r}, \omega]=\int_{(V)} F\left[\bar{r}^{\prime}, \omega\right] \cdot U\left[\bar{r}^{\prime}, \omega\right] \cdot \frac{e^{i k \cdot\left|\bar{r}-\bar{r}^{\prime}\right|}}{\left|\bar{r}-\bar{r}^{\prime}\right|} d^{3} r^{\prime} \tag{5.20}\\
=\text { superposition of wavelets }
\end{array}
$$

- Assuming the plane wave incident $U^{(i)}=e^{i k \cdot \bar{s}_{0} \cdot \bar{r}}$, the total field in the for zone:
$U^{(s)}$
$U[\bar{r}, \omega]=e^{i k \cdot \bar{s}_{0} \cdot \bar{r}}+\int_{(V)} F\left[\bar{r}^{\prime}, \omega\right] \cdot U\left[\bar{r}^{\prime}, \omega\right] \cdot \frac{e^{i k \cdot\left|\bar{r}-\bar{r}^{\prime}\right|}}{\left|\bar{r}-\bar{r}^{\prime}\right|} d^{3} r^{\prime}$

5.3 The Born Approximation

- Useful Approximation (for zone)
$\left|\bar{r}-\bar{r}^{\prime}\right|=\sqrt{r^{2}+r^{\prime 2}-2 r r^{\prime} \cos \theta}$
- Since $r^{\prime} \ll r$ and $\sqrt{1-2 x} \simeq 1-x$
$1+2 \frac{r^{\prime}}{r} \cos \theta+\underbrace{\left(\frac{r^{\prime}}{r}\right)^{2}}_{\simeq 0}$

$$
\begin{equation*}
\left|\bar{r}-\bar{r}^{\prime}\right| \simeq r-r^{\prime} \cos \theta \tag{5.22a}
\end{equation*}
$$

- Equivalently $\left|\bar{r}-\bar{r}^{\prime}\right| \simeq r-\bar{S} \cdot \bar{r}^{\prime}$

5.3 The Born Approximation

- Equation 5.22b implies that

$$
\begin{equation*}
\frac{e^{i k \cdot\left|\bar{r}-\bar{r}^{\prime}\right|}}{\left|\bar{r}-\bar{r}^{\prime}\right|} \simeq \frac{e^{i k \cdot r}}{r} e^{i k \cdot \bar{s} \cdot \bar{r}} \tag{5.23}
\end{equation*}
$$

- The scattered field $U^{(S)}$ in equation 5.21 becomes

$$
\begin{equation*}
U^{(S)}[r \bar{s}, \omega]=\frac{e^{i k \cdot r}}{r} \int F\left[\bar{r}^{\prime}, \omega\right] \cdot U\left[\bar{r}^{\prime}, \omega\right] \cdot e^{-i k \cdot \bar{s} \cdot \bar{r}^{\prime}} d^{3} r^{\prime} \tag{5.24}
\end{equation*}
$$

- Equation 5.24 is generally difficult to solve but a meaningful approximation can be made: the medium is weakly scattering $=1^{\text {st }}$ Born Approximation.
- i.e. the field in the medium \simeq incident field $=>U\left[r^{\prime}, \omega\right]=e^{i k \cdot \bar{s} \cdot \bar{r}^{\prime}}$

5.3 The Born Approximation

- With $U\left[r^{\prime}, \omega\right]=e^{i k \cdot \bar{s} \cdot \bar{r}^{\prime}}$, equation 5.24 becomes the Born Approximation:

$$
\begin{equation*}
U^{(S)}\left[\bar{S}, \bar{s}_{0}\right]=A \int F\left[r^{\prime}\right] \cdot e^{-i k \cdot\left(\bar{s}-\bar{s}_{0}\right) \cdot \bar{r}^{\prime}} d^{3} r^{\prime} \tag{5.25}
\end{equation*}
$$

- Scattering vector:

$$
\bar{q}=k\left(\bar{s}-\bar{S}_{0}\right) \rightarrow \text { momentum transfer }
$$

- Note: $|\bar{p}|=\left|\bar{p}_{0}\right| \rightarrow$ elastic scattering

- Equation 5.25 becomes:

$$
\begin{equation*}
U^{(S)}[g]=A \int F\left[r^{\prime}\right] \cdot e^{-i \cdot \bar{q} \cdot \bar{r}^{\prime}} d^{3} r^{\prime} \tag{5.26}
\end{equation*}
$$

5.3 The Born Approximation

- Fourier Relationship:

$$
\left[\begin{array}{l}
U^{(S)}[g]=\Im\left[F\left[\bar{r}^{\prime}\right]\right] \\
F\left[\bar{r}^{\prime}\right]=\frac{1}{4 \pi} k^{2} \cdot\left(n^{2}\left[r^{\prime}\right]-1\right)
\end{array}\right.
$$

- F.T. is nice because it is easy to compute and bi-directional

$\theta=s$ cattering angle

5.3 The Born Approximation

- So measuring $\mathrm{I}[\theta]$ we can get info about $\mathrm{n}[\mathrm{r}]$ because

$$
\begin{equation*}
F\left[\bar{r}^{\prime}\right]=\mathfrak{I}[U[\bar{q}]] \tag{5.27}
\end{equation*}
$$

- Historically the Born approximation was first used in neutron scattering and then in x-rays
- Recall dispersion relationship $n[\omega]$

$\lim _{\omega \rightarrow \infty} n[\omega]=1 \rightarrow$ for x rays, most materials are within Born Approx
- Spectroscopy Lab uses light scattering to detect early cancer!!

5.4 The Spatial Correlation Function

- $U^{(s)}(q)=A \int F\left(r^{\prime}\right) e^{-\bar{q} q \bar{r}^{\prime}} d^{3} r^{\prime}$ provides the scattered field $U^{(s)}$
- The measured quantity is $\left|U^{(s)}\right|^{2}=I^{(s)}$

$$
I^{(s)}=\left|U^{(s)}\right|^{2}=\mathfrak{S}[F(r)] \mathfrak{S}\left[F\left(r^{\prime}\right)\right]^{*}
$$

- Recall correlation theorem: $G G^{*}=\Im[g \otimes g]$
- Product of Fourier Transformation equals \mathfrak{J} of correlation.
- $F\left(r^{\prime}\right)=\Im[U(\bar{g})]$ becomes:

$$
\begin{align*}
& I^{(s)}=\Im[F(r) \otimes F(r)] \quad \text { where } C(r)=\int f\left(r^{\prime}\right) f\left(r^{\prime}-r\right) d^{3} r^{\prime} \\
& I^{(s)}(q)=\int C(r) e^{-i q \cdot-r} d^{3} \bar{r} \tag{4.28}
\end{align*}
$$

5.4 The Spatial Correlation Function

- $I^{(s)}(\bar{q})=\int C(\bar{r}) e^{-i \bar{g} \bar{r}} d^{3} \bar{r}$ is another form of the Born approximation
- It connects measurable quantity $I^{(s)}(g)$ with the spatial correlation function $C(\bar{r})$.
- $I^{(s)}(q)=\int C(\bar{r}) e^{-\overline{\bar{q}} \bar{r}} d^{3}{ }^{3}$ r applies to both continuous and discrete media.

5.5 Single Particle Under Born Approximation

- Spherical particle $\mid n(r)=n$, if $|n|<R$

0 , rest

- Correlation means the volume of overlaps between shifted "versions" of the function:

$$
\begin{equation*}
C(r)=\int f\left(r^{\prime}\right) f\left(r^{\prime}-r\right) d^{3} r^{\prime} \tag{5.29}
\end{equation*}
$$

- Use some geometry to show:

- The differential cross section of such particle is $\sigma_{d}(q)=I_{d}(q)$

5.5 Single Particle Under Born Approximation

- Using: $\quad I^{(s)}(q)=\int c(r) e^{-i \bar{q} \cdot \vec{r}} d^{3} \bar{r}$
- $\sigma_{d}(q)=A \frac{1}{q^{4} v^{6}}[\sin (q a)-g a \cos (q a)]^{2}$
- $\sigma_{d}(q)=A \frac{1}{q^{4} v^{6}}[\sin (q a)-g a \cos (q a)]^{2}$ is the solution for RayleighGauss particles (Born approx. for spheres).
- Applies for $k d(n-1) \ll 1$
- Greater applicability than Rayleigh(Rayleigh is a particular case of Rayleigh-Gaus, for a $\rightarrow 0$)

5.6 Ensemble of particles

- Example:

$$
\begin{equation*}
n(x)=f(x) \otimes\left[\sum_{i} \delta\left(x-x_{i}\right)\right] \rightarrow \text { Convolution } \tag{5.32}
\end{equation*}
$$

- Particles have refractive index given by $\mathrm{f}(\mathrm{x})$, but are distributed in space at positions $\delta\left(x-x_{i}\right)$
- Consider volume distribution of identical particles:

$$
\begin{equation*}
F(r)=F_{0}(r) \otimes \sum d\left(\bar{r}-\bar{r}_{i}\right) \tag{5.33}
\end{equation*}
$$

5.6 Ensemble of particles

- Particles have refractive index given by $f(x)$, but are distributed in space at positions
- Consider volume distribution of identical particles:

$$
\begin{equation*}
F(r)=F_{0}(r) \otimes \sum d\left(\bar{r}-\bar{r}_{i}\right) \tag{5.33}
\end{equation*}
$$

- $F_{0}(r)=$ scattering potential a single particle.
- (V) convolution
- The scattered field is (Eq. 5.26)

$$
\begin{align*}
U^{(s)}(g) & =\Im\left[F_{0}(\bar{r}) \boxtimes\left(\sum_{i} d\left(\bar{r}-\bar{r}_{i}\right)\right]\right. \tag{5.34}\\
& =\underbrace{\mathfrak{J}\left[F_{0}(\bar{r})\right]}_{F(g)} \underbrace{}_{S\left(\sum_{i} d\left(\bar{r}-\bar{r}_{i}\right)\right]}
\end{align*}
$$

5.6 Ensemble of particles

- The scattered field is (Eq. 5.26)

$$
\begin{align*}
U^{(s)}(g) & =\mathfrak{I}\left[F_{0}(\bar{r}) \vee \sum_{i} d\left(\bar{r}-\overline{r_{i}}\right)\right] \tag{5.34}\\
& =\underbrace{\mathfrak{I}\left[F_{0}(\bar{r})\right]}_{F(g)}) \underbrace{}_{S(g)}\left[\sum_{i} d\left(\bar{r}-\bar{r}_{i}\right)\right]
\end{align*}
$$

$F(g)=\underline{\text { Form factor }}$
= Describe the scattering from one particle
$S(g)=$ Structure factor - interference
= Defines the arrangement of scattering

5.6 Ensemble of particles

- Similarly
a) Yang experiment

b) X-ray scattering on crystals
- each scattering is Rayleigh are isotropic in angle (atom)
- Structure factor provides info about lattice

5.7 Mie Scattering

- Provides exact solution σ_{s} for spherical particles of arbitrary refractive index and size.

$$
\begin{equation*}
\sigma_{s}=\pi a^{2} \frac{2}{\alpha^{2}} \sum_{n=1}^{\infty}(2 n+1)\left(\left|a_{n}\right|^{2}+\left|b_{n}\right|^{2}\right) \tag{5.35}
\end{equation*}
$$

with $a_{n}, b_{n}=$ Mie coefficients $=$ complicated functions of $\alpha=k a$

- The above equation is an infinite series

$$
\beta=k \omega a
$$

- Converges slower for larger particles
- Computes routines easily available

$$
\omega=\frac{n}{n_{0}}
$$

5.7 Mie Scattering

- Scattering Efficiency

$$
\begin{equation*}
Q=\frac{\sigma_{s}}{\pi a^{2}} \tag{5.36}
\end{equation*}
$$

- Scattering from large particles:

- Although Mie is restricted to spheres, is heavily used for tissue modeling
- Mie takes into account multiple bounces inside the particle.

5.8 Multiple Light Scattering

- Attenuation through scattering medias is quantified by the scattering mean free path:

$$
\begin{equation*}
l_{s}=\frac{1}{N \sigma_{s}} \tag{5.37}
\end{equation*}
$$

- $\mathrm{N}=$ Concentration of particles $\left[\mathrm{m}^{-3}\right]$
- Scattering Coefficient: $\mu=\frac{1}{l_{s}}=N \sigma_{s}$
- The power left unscattered upon passing through the medium: $P_{f}=P_{i} e^{-\mu_{s} L}$
= Lambert-Beer

5.8 Multiple Light Scattering

- Transport mean free path:

$$
\begin{align*}
l_{t}=\frac{l_{s}}{1-g} \quad g & =\langle\cos (\theta)\rangle \tag{5.39}\\
& =\text { average of scatter angle }
\end{align*}
$$

- l_{t} is renormalizing l_{s}; takes into account the directional scattering of large particles.
- Note:

$$
\begin{aligned}
& g \in(0.75 ; 0.95) \text { for tissue! } \\
& \frac{l_{t}}{l_{s}} \in(10 ; 20) \text {-important factor }
\end{aligned}
$$

5.9 The Transport Equation

- The multiple scattering regime is not tractable for the general case.
- For high concentration of particles some useful approximations can be made.
- Photon random walk model \rightarrow borrowed from nuclear reaction theory-> Transport Equation = Balance of Energy.

- Even this simple equation is typically solved numerically.
- One more approximation \rightarrow analytic solutions.

5.10 The Diffusion Approximation

- Integrate both sides of the equation $S(\bar{r}, \bar{\Omega}, t)$ with respect to solid angle Ω
- $\frac{1}{v} \frac{d \phi}{d t}+\bar{\nabla} \bar{J}(\bar{r}, t)+\mu \phi(\bar{r}, t)=\mu_{s} \phi(\bar{r}, t)+S(\bar{r}, t)$
$\phi=$ photon flux $=\int_{4 \pi} \varphi(\bar{r}, \bar{R}, t) d \bar{\Omega} \quad \bar{J}=$ current $=\int_{4 \pi} \bar{\Omega} \varphi(\bar{r}, \bar{R}, t) d \bar{\Omega}$

5.10 The Diffusion Approximation

- Diffusion Approximation:
- Assume the angular flux is only linearly anisotropic.

$$
\begin{equation*}
\varphi(\bar{r}, \bar{\Omega}, t) \simeq \frac{1}{4 \pi} \phi(\bar{r}, t)+\frac{3}{4 \pi} \bar{\jmath}(\bar{r}, t) \cdot \bar{\Omega} \tag{5.42}
\end{equation*}
$$

- If $\frac{1}{|\bar{J}|} \frac{\partial \bar{J}}{\partial t} \ll v \mu_{t}=$ slow variation of J , an equation that relates $\bar{\jmath}$ and ϕ can be derived:

$$
\begin{align*}
& \bar{J}(\bar{r}, t)=-\frac{1}{3 \mu_{t}} \nabla \phi(\bar{r}, t)=-D(\bar{r}) \bar{\nabla} \phi(\bar{r}, t) \tag{5.43}\\
& \mu t=\frac{1}{l_{t}} ; l_{t}=\frac{l_{s}}{1-g} ; g=\left\langle\Omega \cdot \Omega^{\prime}\right\rangle=\text { average cosine. } \\
& D=\text { Photon diffusion Coefficient }
\end{align*}
$$

- Eq 5.43 is Flick's Law

5.10 The Diffusion Approximation

- The diffusion equation can be derived:

$$
\begin{equation*}
\frac{1}{v} \frac{d \phi}{d t}-\nabla[D(r) \nabla \phi(\bar{r}, t)]+\mu_{a}(r) \phi(\bar{r}, t)=S(\bar{r}, t) \tag{5.44}
\end{equation*}
$$

- Equation in only one variable: $\phi=v r(\bar{r}, t)=$ photon flux

$$
v=\text { photon velocity }
$$

- $\mu_{a}=$ absorption coefficient

$$
n=\text { photon density }\left[\mathrm{m}^{-3}\right]
$$

- For homogeneous medium and no absorption:

$$
\begin{equation*}
\frac{d \phi(\bar{r}, t)}{d t}-v D \nabla^{2} \phi(\bar{r}, t)=v S(r, t) \tag{5.45}
\end{equation*}
$$

5.10 The Diffusion Approximation

- Diffusion equation often used for light-tissue introduction
- Applicability: $L \gg l_{s} \Leftrightarrow$ many scattering events

$$
\mu_{a} \ll \mu_{s} \rightarrow \text { absorption not too high }
$$

- ϕ = measurable quantity
- Diffusion model gives insight into the medium/tissue
- Measurable parameters: μ_{s}, μ_{a}, g, etc

5.11 Solutions of the Diffusion Equation

- Slab of thickness d:
- Power reflected:

$$
\begin{align*}
& P_{R}(r, s, d)=A \cdot s^{-\frac{5}{2}} e^{-\mu_{a} s} e^{-\frac{r^{2}}{4 D s}} f_{R}\left(d, z_{e}\right) \\
& P_{T}(r, s, d)=A \cdot s^{-\frac{5}{2}} e^{-\mu_{a} s} e^{-\frac{r^{2}}{4 D s}} f_{T}\left(d, z_{e}\right) \tag{5.46}
\end{align*}
$$

- With: $\mathrm{s}=$ path-length $=\mathrm{v}_{\mathrm{t}}$

$$
\mathrm{z}_{\mathrm{e}}=\text { extrapolated length } \rightarrow \text { boundary condition }
$$

- f_{R}, f_{T} reflection and transmission functions
- Laser pulse investigation has been used for tissue
- Stationary investigation also used \rightarrow spatially resolved

5.12 Diffusion of Light in Tissue

- Tissue is a highly scattering medium; direction \& polarization are randomized.
- Typical values: $\mathrm{I}_{\mathrm{s}}=100 \mu \mathrm{~m}, g \simeq 0.9$
- Measurable quantities:
- $\mu_{\mathrm{a}}=$ absorption factor
- g = anysotropy factor
- $\mu_{s}=$ scattering coefficient
- Reflection and geometry is suitable for in vivo diagnostics
a) Time resolved:

5.12 Diffusion of Light in Tissue

a) Time resolved:

- Used with femtosecond laser and LCI
- $P(s)$ is a measurable tissue characterization
b) Spatially resolved:

- Note:
- Semi-infinite medium model is heavily used.
- If there is refractive index at boundary, not quite continuous angular distribution.

