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� Amplitude A and phase φ are random functions of both time

and space:

1.1 Properties of EM Fields
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a) Polarization:

� Gives the direction of field oscillation

� Generally, light is a transverse wave (unlike sound = 

longitudinal)

1.1 Properties of EM Fields
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� Anisotropic  materials: different optical properties along 

different axis � useful
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a) Polarization:

� There is always a basis              for decomposing the field 

into 2 polarizations (eigen modes); equivalently (right, left) 

circular polarization is also a basis.

� Dichroism: preferential absorption of one component �

1.1 Properties of EM Fields
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� Dichroism: preferential absorption of one component �

one way to create polarizers:

� Malus Law: 
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a) Polarization:

� Natural Light � unpolarized � superposition Ex= Ey with 

no phase relationship between the two

� Circularly polarized � Ex= Ey, φx – φy = π/2 !

� Matrix formalism of polarization transformation 

1.1 Properties of EM Fields
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� Matrix formalism of polarization transformation 

(Jones – 2x2, complex & Muller – 4x4, real)
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b) Amplitude:

1.1 Properties of EM Fields
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•Stabilized laser
t

•Thermal source
t

A(x)

x
•Plane Wave•Arbitrary field
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c) Phase:     [Φ] = rad

1.1 Properties of EM Fields

Φ(t) Φ(t)

o
ω

ECE 460 – Optical Imaging

•Laser at freq      

Φ =ωt

•Thermal source

•Plane Wave

Φ =kz 

•Random field
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c) Phase:     [Φ] = rad

� For quasi-monochromatic fields, plane wave

1.1 Properties of EM Fields
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� wave number
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� Random variable E(t) has a frequency-domain counterpart:

� Similarly E(x) has a frequency-domain pair:

1.2 The frequency domain representation

( )( ) ( ) iE A e φ ωω ω= (1.4)
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� Similarly E(x) has a frequency-domain pair:

( )( ) ( ) iE A e φ ξξ ξ= (1.5)
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1.2 The frequency domain representation
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a) Spectral amplitude:

� Optical Spectrum:

� Angular Spectrum:
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� Spatial Frequency (connects to angular 

spectrum)

� Tipically:  t �

x �

� The information contained is the same (t,    ) and (x,   )
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b) Spectral phase:

� Phase delay of each spectral component

1.2 The frequency domain representation

Φ(ω) Φ(ξ)~ω
2

Optical Frequency

2

Spatial Frequency
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� Full similarity between (t,    ) and (x,   )

•Dispersive material

(linear chirp)

•Defocused point source

(1st order aberration)
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� The information about the system under investigation may 

be contained in polarization and:

� A(t), φ(t)

� A(   ), φ(    )

8 quantities

1.3 Measurable Quantities

ω ω (t,   )ω
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8 quantities

� A(x), φ(x)

� A(   ), φ(  )

� Experimentally, we have access only to:

time average 

ξ ξ
(x,   )ξ
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� Experimentally, we have access only to:

time average

� i.e the phtodetectors ( photodiode, CCD, retina, etc) produce 

photoelectrons:

1.3 Measurable Quantities
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photoelectrons:

e
h E Wυ −= +

Photon incident 

energy Electron 

kinetic

energy

Work

(Einstein) (1.7)
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� All detectors sensitive to power/energy

� However, all 8 quantities can be accessed via various tricks

� Eg1: Want I(   ) � measure I(    ) and use a device with 

� Eg2: Want      � use interferometry � I(   )

1.3 Measurable Quantities
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� Space - momentum or energy-time cannot be measured 

simmultaneously with infinite accuracy

constant  

constant

1.4 Uncertainty Principle

x p∆ ⋅∆ = h�
E t∆ ∆ =
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� For photons: 
E ω= �
p k= �
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a) t –

constant

�

1.4 Uncertainty Principle
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� Implications:  

1- short pulses require broad spectrum

2-high spectral resolutioon requires long time of 

measurement
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b) x –

� ;

1.4 Uncertainty Principle
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� ;

� ;

� - meaning of resolution
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diffraction

� Smaller aperture � Higher angle

1.4 Uncertainty Principle

k
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� Smaller aperture � Higher angle

� If aperture <      , light doesn’t go through 

� Eg: Microwave door 
2

λ

k
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� We will encounter these relationships many times later

� Fourier seems to have understood this uncertainity principle 

way before Heisenberg!

1.4 Uncertainty Principle

ECE 460 – Optical Imaging

19Chapter 1: Introduction


