

Optical Imaging Chapter 1 - Introduction

Gabriel Popescu

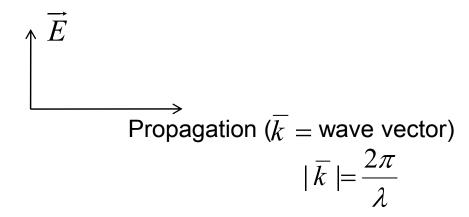
University of Illinois at Urbana-Champaign Beckman Institute

Quantitative Light Imaging Laboratory http://light.ece.uiuc.edu

Amplitude A and phase φ are random functions of both <u>time</u> and <u>space</u>:

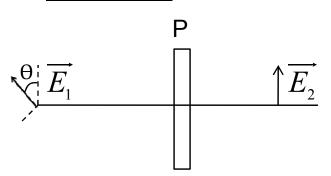
$$\vec{E}(\vec{r},t) = \vec{A}(\vec{r},t).e^{i\phi(\vec{r},t)}$$
(1.1)

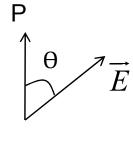
- a) Polarization:
 - Gives the direction of field oscillation
 - Generally, light is a <u>transverse wave</u> (unlike sound = longitudinal)



 ■ Anisotropic materials: different optical properties along different axis → useful

- a) Polarization:
 - There is always a basis (\hat{x}, \hat{y}) for decomposing the field into 2 polarizations (eigen modes); equivalently (right, left) circular polarization is also a basis.
 - Dichroism: preferential absorption of one component → one way to create <u>polarizers</u>:

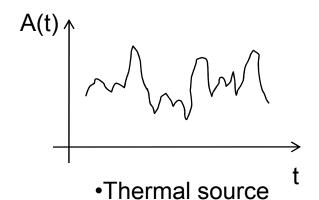


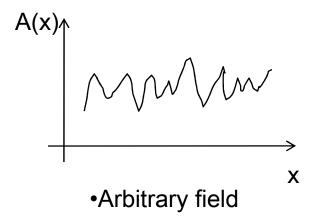


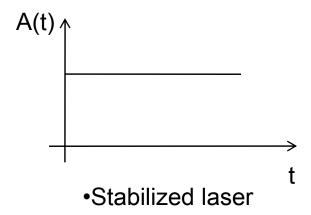
• Malus Law: $|E_1| = |E_2| .\cos \theta$ (1.2)

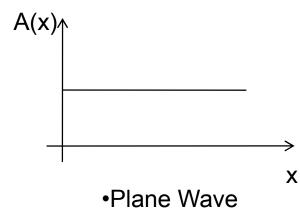
- a) Polarization:
 - Natural Light \rightarrow unpolarized \rightarrow superposition $E_x = E_y$ with no phase relationship between the two
 - Circularly polarized \rightarrow $E_x = E_y$, $\phi_x \phi_y = \pi/2$!
 - Matrix formalism of polarization transformation (Jones 2x2, complex & Muller 4x4, real)

b) Amplitude: $\left[\vec{A(r,t)}\right] = \frac{V}{m}$

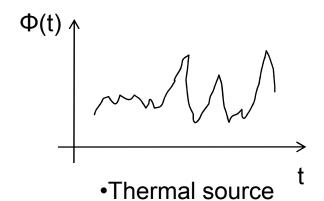


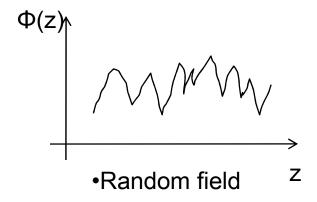


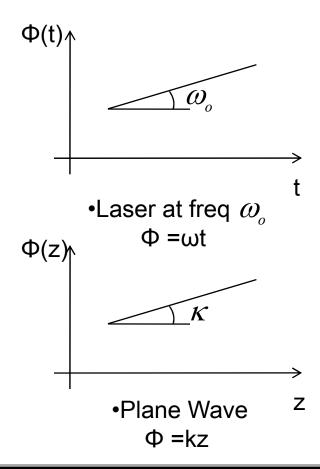




c) Phase: $[\Phi] = rad$







- c) Phase: $[\Phi] = rad$
 - For quasi-monochromatic fields, plane wave

$$\phi = \omega t - \vec{k} \cdot \vec{r}$$

•
$$k = \frac{\omega}{c} = \frac{2\pi \upsilon}{c} = \frac{2\pi}{Tc} = \frac{2\pi}{\lambda}$$
 = wave number (1.3)

1.2 The frequency domain representation

Random variable E(t) has a frequency-domain counterpart:

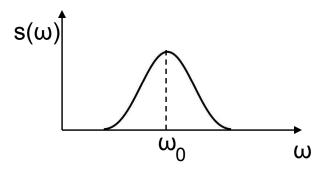
$$E(\omega) = A(\omega)e^{i\phi(\omega)} \tag{1.4}$$

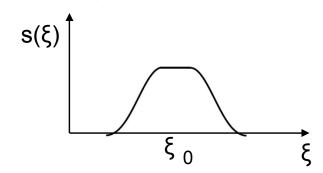
Similarly E(x) has a frequency-domain pair:

$$E(\xi) = A(\xi)e^{i\phi(\xi)} \tag{1.5}$$

1.2 The frequency domain representation

- a) Spectral amplitude:
 - Optical Spectrum: $s(\omega) = |A(\omega)|^2$
 - Angular Spectrum: $s(\xi) = |A(\xi)|^2$





- $[\xi] = m^{-1} =$ Spatial Frequency (connects to angular spectrum)
- Tipically: $t \to \omega$ $x \to \xi$ Will follow similar equations
- The information contained is the same (t, ω) and (x, ξ)

1.2 The frequency domain representation

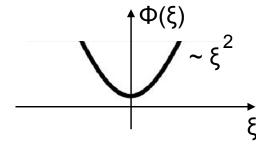
- b) Spectral phase:
 - Phase delay of each spectral component

Optical Frequency

 $\Phi(\omega) = \begin{pmatrix} -\omega^2 \\ \omega_0 \end{pmatrix}$ •Dispersive material

(linear chirp)

Spatial Frequency



 Defocused point source (1st order aberration)

• Full similarity between (t,ω) and (x,ξ)

1.3 Measurable Quantities

The information about the system under investigation may be contained in <u>polarization</u> and:

■ A(t),
$$\phi$$
(t)
■ A(ω), ϕ (ω)

■ A(x), ϕ (x)
■ A(ξ), ϕ (ξ)

8 quantities
• (x, ξ)

Experimentally, we have access only to:

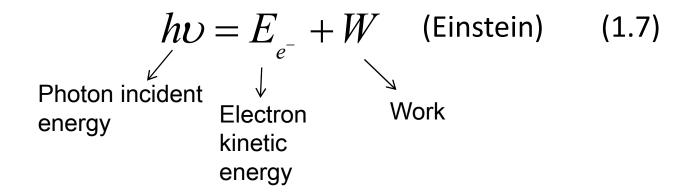
$$I = \langle |A(t)|^2 \rangle = \text{time average}$$

1.3 Measurable Quantities

Experimentally, we have access only to:

$$I = \langle |A(t)|^2 \rangle = \text{time average}$$
 (1.6)

• i.e the phtodetectors (photodiode, CCD, retina, etc) produce photoelectrons:



1.3 Measurable Quantities

- All detectors sensitive to power/energy
- However, all 8 quantities can be accessed via various tricks
- Eg1: Want $I(\lambda)$ → measure $I(\theta)$ and use a device with $\theta(\lambda)$
- Eg2: Want $\phi \rightarrow$ use interferometry $\rightarrow I(\phi)\alpha |E_1||E_2|\cos(\phi_1 \phi_2)$

 Space - momentum or energy-time cannot be measured simmultaneously with infinite accuracy

For photons:

$$\begin{cases}
E = \hbar \omega \\
\overline{p} = \hbar \overline{k}
\end{cases}$$

a)
$$t-\omega$$

$$\hbar\Delta\omega\Delta t = \text{constant}$$

$$\rightarrow \Delta\omega \Delta t \simeq 2\pi$$

- Implications:
 - 1- short pulses require broad spectrum
 - 2-high spectral resolutioon requires long time of measurement

$$\frac{\overline{k}_i}{\overline{q}}$$

$$\underline{\overline{k}_{i}} \underbrace{\overline{k}_{s}}_{\Theta} \underbrace{\overline{\Delta p}} = h(\overline{k}_{s} - \overline{k}_{i}) = h\overline{q}$$

$$\Rightarrow \left| \Delta x \middle| \overline{q} \middle| \simeq \lambda \pi \right|$$

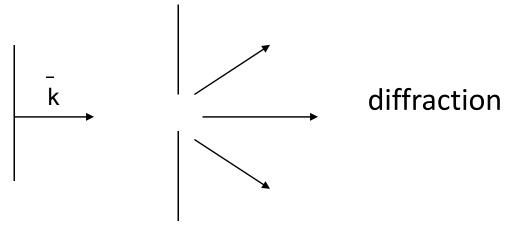
$$\Delta x \left| \overline{q} \right| \simeq \lambda \pi$$
 ; $\left| \overline{q} \right| = 2k \sin(\frac{\theta}{2})$

$$\rightarrow \Delta x \frac{2\sin(\theta/2)}{2} \approx 1$$

$$\theta \sim \frac{1}{\Delta x}$$

$$\rightarrow \Delta x_{\min} = -\frac{1}{2}$$

 $\Delta x_{\min} = \frac{\lambda}{2}$ - meaning of resolution



■ Smaller aperture → Higher angle

$$\frac{1}{k}$$

- If aperture $<\frac{\lambda}{2}$, light doesn't go through
- Eg: Microwave door

- We will encounter these relationships many times later
- Fourier seems to have understood this uncertainity principle way before Heisenberg!

19