Optical Imaging Chapter 2 - Math Toolbox

Gabriel Popescu

University of Illinois at Urbana-Champaign Beckman Institute

Quantitative Light Imaging Laboratory http://light.ece.uiuc.edu

Objectives

- Develop a set of tools useful throughout the course

2.1 Linear Systems

- Consider a simple system:
- Equation of motion:

$$
\begin{equation*}
m \frac{d x^{2}}{d t^{2}}+\gamma m \frac{d x}{d t}+m \omega_{o}^{2} x=f(t) \tag{2.1}
\end{equation*}
$$

- Define Operator: (linear differential eqs)

$$
\begin{align*}
L & =m \frac{d}{d t^{2}}+\gamma m \frac{d}{d t}+m \omega_{o}^{2} \tag{2.2}\\
& \rightarrow L(x)=F(t) \tag{2.3}
\end{align*}
$$

2.1 Linear Systems

- Operator L has important properties:

$$
\text { a) } \begin{align*}
L(a x) & =m \frac{d(a x)}{d t^{2}}+\gamma m \frac{d(a x)}{d t}+m \omega_{o}^{2}(a x)= \\
& =a\left[m \frac{d(x)}{d t^{2}}+\gamma m \frac{d(x)}{d t}+m \omega_{o}^{2}(x)\right]= \\
& =a L(x) \tag{2.4}
\end{align*}
$$

b) $L(x+y)=m \frac{d(x+y)}{d t^{2}}+\gamma m \frac{d(x+y)}{d t}+m \omega_{o}{ }^{2}(x+y)=$

$$
\begin{equation*}
=L(x)+L(y) \tag{2.5}
\end{equation*}
$$

2.1 Linear Systems

- Definition: An operator obeying properties $\mathrm{L}(\mathrm{ax})=\mathrm{aL}(\mathrm{x})$ and $L(x+y)=L(x)+L(y)$ is called linear
- Most of the system in nature are linear; well, at least to the first approximation
- They are mathematically tractable \rightarrow analytic solutions
- Consider equations:

$$
\begin{align*}
& \left\{\begin{array}{l}
L\left(x_{1}\right)=0 \\
L\left(x_{2}\right)=0
\end{array}\right. \tag{2.6}\\
& \rightarrow x_{1}, x_{2} \text { are solutions }
\end{align*}
$$

2.1 Linear Systems

- Continuing:

$$
\begin{align*}
\rightarrow L\left(a x_{1}+b x_{2}\right) & =L\left(a x_{1}\right)+L\left(b x_{2}\right) \\
& =a L\left(x_{1}\right)+b L\left(x_{2}\right) \\
& =0+0 \tag{2.7}
\end{align*}
$$

- Any linear combination of solutions: x_{1}, x_{2} is also a solution
- The number of independent solutions = degrees of freedom

$$
\begin{align*}
& X_{1}, X_{2}, \ldots, X_{N}=\text { independent solutic } \tag{2.8}\\
& X_{i} \neq \sum_{j \neq i} \alpha_{j} x_{j}, \text { for any } \alpha_{j}
\end{align*}
$$

- Linear Differential eqs of order N allow for N independent solutions

2.2 Light-matter interaction

- Classic model of atom: e^{-}rotating around $\mathrm{N} \approx$ planets

\rightarrow Lorentz Model
- Analogy :

2.2 Light-matter interaction

- So, notion of charge follows the same eq (2.1)

$$
\begin{equation*}
m \frac{d x^{2}}{d t^{2}}+\gamma m \frac{d x}{d t}+m \omega_{o}^{2} x=F(t) \tag{2.9}
\end{equation*}
$$

- Incident field drives the charge: $\bar{F}(t)=q \bar{E}(t)$
- For $\mathrm{e}^{-}, \mathrm{q}=-\mathrm{e}$!
- Monochromatic field: $E(t)=E_{o} e^{-i e t}$

$$
\begin{equation*}
\rightarrow m \ddot{x}+\gamma m \dot{x}+m \omega_{o}{ }^{2}=q E_{o} e^{-i o t} \tag{2.10}
\end{equation*}
$$

- This is the eq of motion for eletric charge under incident EM field. Can explain most of Optics!

2.3 Superposition principle

- Suppose we have 2 fields simoultaneously interacting with the material (Eg. ω_{1}, ω_{2}):

$$
\begin{align*}
& E_{1}=\left|E_{1}\right| e^{-i \omega_{t} t} ; q E_{1}=F_{1} \\
& E_{2}=\left|E_{2}\right| e^{-i \omega_{2} t} ; q E_{2}=F_{2} \tag{2.11}
\end{align*}
$$

- Let x_{1}, x_{2} be solutions of displacements for the two forces F_{1} and F_{2}

$$
\left\{\begin{array}{l}
L\left(x_{1}\right)=F_{1}(t) \tag{2.12}\\
L\left(x_{2}\right)=F_{2}(t)
\end{array}\right.
$$

2.3 Superposition principle

- Consider the same solution:

$$
\begin{align*}
L\left(x_{1}+x_{2}\right) & =L\left(x_{1}\right)+L\left(x_{2}\right) \tag{2.13}\\
& =F_{1}(t)+F_{2}(t)
\end{align*}
$$

- So, final solution is just the sum of individual solutions. Nice!
- This is the superposition principle
- For the 2 frequency example:

- It's as if one applies the fields one by one and sums their results

2.4 Green's function/impulse response

- Let the incident field, i.e driving field, have a complicated shape

\rightarrow arbitrary
- $E(t)$ can be broken down into a sucession of short pulses, i.e Dirac delta functions:

$$
\begin{align*}
& \delta(t)=\left\{\begin{array}{l}
0, \mathrm{t}=0 \\
1, \text { otherwise }
\end{array}\right. \tag{2.14}\\
\rightarrow & E(t)=\int_{-\infty}^{\infty} E\left(t^{\prime}\right) \delta\left(t-t^{\prime}\right) d t^{\prime} \tag{2.15}
\end{align*}
$$

2.4 Green's function/impulse response

- If we know the response of the system to a short pulse, $\delta(t)$, the problem is solved
- Let $\mathrm{h}(\mathrm{t})$ be the solution to $\delta(t)$
- The final solution for an arbitrary force $\bar{F}(t)=q \bar{E}(t)$ is:

$$
\begin{equation*}
x(t)=\int_{-\infty}^{\infty} E\left(t^{\prime}\right) h\left(t-t^{\prime}\right) d t^{\prime} \tag{2.16}
\end{equation*}
$$

- This is the Green's method of solving linear problems
- $\mathrm{h}(\mathrm{t})=$ Green's function or impulse response of the system
- Complicated problems become easily tractable!

2.5 Fourier Transforms

- Very efficient tool for analyzing linear (and non-linear) processes
- Definition:

$$
\begin{align*}
\mathfrak{J}[f(x)] & =\int_{-\infty}^{\infty} f(x) e^{-i 2 \pi x f_{x}} d x \tag{2.17}\\
& =F\left(f_{x}\right)=\widetilde{f}(\xi)
\end{align*}
$$

- F is the Fourier transform of f
- $f: \Delta \rightarrow \Delta ; \Delta \in \mathbb{C}$, f must satisfy:

$$
(x, y, z) \stackrel{\mathfrak{I}}{\rightarrow}(\xi, \eta, \zeta)
$$

a) $\int|f|<\infty$ - modulus integrable
b) f has finite number of discontinuities in the finite domain Δ
c)f has no infinite discontinuities

- In practice, some of these conditions are sometimes relaxed

2.5 Fourier Transforms

- Inverse Fourier Transforms:

$$
\begin{align*}
\mathfrak{J}^{-1}[\mathfrak{J}(f(x))] & =\int_{-\infty}^{\infty} \widetilde{f}(\xi) e^{+i 2 \pi x f_{x}} d f_{x} \tag{2.18}\\
& =f(x)
\end{align*}
$$

$$
\begin{equation*}
\rightarrow \mathfrak{J}^{-1}[\mathfrak{J}(f)]=f \tag{2.19}
\end{equation*}
$$

- Meaning of F.T: reconstruct a complicated signal by summing sinusoidals with proper weighting

2.5 Fourier Transforms

- Fourier transform is a linear operator:

$$
\begin{align*}
& \mathfrak{J}[a f(x)+b g(x)]= \\
& =\int_{-\infty}^{\infty}[a f(x)+b g(x)] e^{-i 2 \pi x \xi} d x= \\
& =a \int_{-\infty}^{\infty} f(x) e^{-i 2 \pi x \xi} d x+b \int_{-\infty}^{\infty} g(x) e^{-i 2 \pi x \xi} d x \tag{2.20}\\
& =a \mathfrak{I}[f(x)]+b \mathfrak{I}[g(x)]
\end{align*}
$$

2.6 Basic Theorems with Fourier Transforms

a) Shift Theorem: if $\widetilde{f}(\xi)=\Im[f(x)]$

$$
\begin{equation*}
\mathfrak{J}\{f(x-a)\}=\widetilde{f}(\xi) e^{-i 2 \pi \xi a} \tag{2.21}
\end{equation*}
$$

- Easy to prove using definition
- Eq 2.21 suggest that a shift in one domain corresponds to a linear phase ramp in the other (Fourier) domain

2.6 Basic Theorems with Fourier Transforms

b) Parseval's theorem: if $\mathfrak{J}[f(x)]=\widetilde{f}(\xi)$

$$
\begin{equation*}
\int_{-\infty}^{\infty}|f(x)|^{2} d x=\int_{-\infty}^{\infty}|\widetilde{f}(\xi)|^{2} d \xi \tag{2.22}
\end{equation*}
$$

- Conservation of total energy

2.6 Basic Theorems with Fourier Transforms

c) Similarity theorem: if

$$
\begin{align*}
& \Im[f(x)]=\widetilde{f}\left(f_{x}\right) \text {, i.e. } \widetilde{f} \text { is the F.T of } f \\
& \Im\{f(a x)]=\frac{1}{|a|} \widetilde{f}\left(\frac{\xi}{a}\right) \tag{2.23}
\end{align*}
$$

- Theorem 2.23 provides intuitive feeling for F.T
- Let's consider

2.6 Basic Theorems with Fourier Transforms

c) Similarity theorem:

- Let's consider:

2.6 Basic Theorems with Fourier Transforms

c) Similarity theorem:

- ! Broader functions in one domain implies narrower functions in the other domain and vice-versa
- Eg. To obtain short temporal pulses of light, one needs a broad spectrum (Ti: Saph laser)
-! Only an infinite spectrum allows for δ-functions pulses

2.6 Basic Theorems with Fourier Transforms

- Before we present the last theorems, we introduce the definitions of convolution and correlation
- Let

$$
\begin{aligned}
& \mathrm{g}(\mathrm{x}) \xrightarrow{\mathfrak{I}} \mathrm{G}(\xi) \\
& \mathrm{h}(\mathrm{x}) \xrightarrow{\mathfrak{I}} \mathrm{H}(\xi)
\end{aligned}
$$

- Convolution of g and h :

$$
g \otimes h=\int_{-\infty}^{\infty} g\left(x^{\prime}\right) h\left(x-x^{\prime}\right) d x^{\prime}
$$

- Correlation of g and h

$$
\begin{equation*}
g \otimes h=\int_{-\infty}^{\infty} g\left(x^{\prime}\right) h\left(x^{\prime}-x\right) d x^{\prime} \tag{2.25}
\end{equation*}
$$

2.6 Basic Theorems with Fourier Transforms

- Difference between \otimes and (V) is $h\left(x-x^{\prime}\right)$ vs $h\left(x^{\prime}-x\right)$, i.e. flip vs non-flip of h
- Particular case:
- Autocorrelation: g=h

$$
\begin{equation*}
g \otimes g=\int_{-\infty}^{\infty} g\left(x^{\prime}\right) g\left(x^{\prime}-x\right) d x^{\prime} \tag{2.26}
\end{equation*}
$$

- Exercise: Use PC to show:

$$
\begin{aligned}
& \Omega \otimes \Omega=\Lambda \\
& \sim \otimes \sim \sim=\sim \sim \\
& \text { Gauss } \otimes \text { Gauss }=\text { Gauss }
\end{aligned}
$$

2.6 Basic Theorems with Fourier Transforms

d) Convolution theorem:

$$
\begin{align*}
& \mathfrak{J}[g \odot h]=G H \tag{2.27}\\
& \text { i.e } \mathfrak{J}\left[\int_{-\infty}^{\infty} g\left(x^{\prime}\right) h\left(x-x^{\prime}\right) d x^{\prime}\right]=G(\xi) H(\xi)
\end{align*}
$$

- Convolution in one domain corresponds to a product in the other. Nice!
- Multiplication is always easy to do
- Recall Green's function: $\mathrm{h}(\mathrm{t})=$ the response to a δ-function light pulse

2.6 Basic Theorems with Fourier Transforms

- We found (Eq 2.16):

$$
x(t)=\int_{-\infty}^{\infty} E\left(t^{\prime}\right) h\left(t-t^{\prime}\right) d t^{\prime}
$$

i.e the response to an arbitrary field $\mathrm{E}(\mathrm{t})$ is the convolution $\mathrm{E} \otimes \mathrm{h}$!

- Let's take the F.T:

$$
\begin{equation*}
x(\omega)=E(\omega) h(\omega) \tag{2.28}
\end{equation*}
$$

\rightarrow It doesn't get any simpler than this
i.e if we know the impulse response $h(t)$, (or the Green's function) take F.T $\rightarrow \mathrm{h}(\omega) \equiv$ transfer function \rightarrow response to any field E is:

$$
\begin{equation*}
x(t)=\mathfrak{I}[E(\omega) h(\omega)] \tag{2.29}
\end{equation*}
$$

2.6 Basic Theorems with Fourier Transforms

e) Correlation theorem:

- \otimes differs from (() only by minus sign \rightarrow similar theorem:

$$
\begin{equation*}
\text { i.e } \quad \mathfrak{J}\left[\int_{-\infty}^{\infty} g\left(x^{\prime}\right) h\left(x^{\prime}-x\right) d x^{\prime}\right]=G(\xi) H(\xi)^{*} \tag{2.30}
\end{equation*}
$$

\rightarrow Particular case: $\mathrm{g}=\mathrm{h}$ (auto correlation):

$$
\begin{equation*}
\mathfrak{J}[g \otimes g]=G G^{*}=|G|^{2} \tag{2.31}
\end{equation*}
$$

2.6 Basic Theorems with Fourier Transforms

e) Correlation theorem:

- Eg: F.T of an auto correlation is the power spectrum
- Very important for both time and space fluctuating fields:

$$
\left\{\begin{array}{l}
\Gamma(t)=\int_{-\infty}^{\infty} E\left(t^{\prime}\right) E\left(t^{\prime}-t\right) d t=\text { auto correlation } \\
\mathfrak{J}[\Gamma(t)]=E(\omega) E^{*}(\omega)=S(\omega)=\frac{\text { power spectrum }}{\text { (Wiener-Khinchin theorem) }}
\end{array}\right.
$$

- We'll meet them again later!

2.7 Differential equations and Fourier Transforms

- Let f be a function of time:

$$
\begin{equation*}
f(t)=\int_{-\infty}^{\infty} F(\omega) e^{+i \omega t} d \omega=\mathfrak{J}^{-1}(F) \tag{2.33}
\end{equation*}
$$

- What is $\frac{\partial f}{\partial t}$?
$\frac{\partial f}{\partial t}=\frac{\partial}{\partial t}\left[\int_{-\infty}^{\infty} F(\omega) e^{i \omega t} d \omega\right]=$

$$
\begin{align*}
& =\int_{-\infty}^{\infty} F(\omega) \frac{\partial}{\partial t}\left[e^{i \omega t}\right] d \omega= \\
& =\int_{-\infty}^{\infty}[i \omega F(\omega)] e^{i \omega t} d \omega \\
& =\mathfrak{J}^{-1}[i \omega F] \tag{2.34}
\end{align*}
$$

- So, $f \rightarrow F_{\&} \partial f / \partial t \rightarrow i \omega F$

2.7 Differential equations and Fourier Transforms

- Great:

$$
\left\{\begin{array}{l}
\mathfrak{J}[f(t)]=F(\omega) . \text { Then: } \tag{2.34}\\
\mathfrak{J}\left[\frac{\partial f(t)}{\partial t}\right]=i \omega F(\omega) \rightarrow \text { useful }
\end{array}\right.
$$

- Now $\mathfrak{J}\left[\frac{\partial^{2} f}{\partial t^{2}}\right]=\mathfrak{J}\left[\frac{\partial}{\partial t}\left(\frac{\partial f}{\partial t}\right)\right]=i \omega i \omega F(\omega)$
$\begin{aligned} &=-\omega^{2} F(\omega) \\ & \text { In others words: } \mathfrak{J}\left[\frac{\partial^{n} f}{\partial t^{n}}\right]=i^{n} \omega^{n} F(\omega)\end{aligned}$
- Differentiation theorem

2.7 Differential equations and Fourier Transforms

- Why 2.35 result is important? Because linear differential equations are resolved in the frequency domain more easily
- Eg: Recall our e- revolving around nucleus under field illumination $\mathrm{E}(\mathrm{t})$

$$
\begin{equation*}
m \frac{d^{2} x(t)}{d t^{2}}+\gamma m \frac{d x(t)}{d t}+m \omega_{o}^{2} x(t)=q E(t) \tag{2.36}
\end{equation*}
$$

- The solution is $\mathrm{x}(\mathrm{t})$. But we can solve for
$x(\omega)=\mathfrak{J}[x(t)]$ and take \mathfrak{J}^{-1} in the end

2.7 Differential equations and Fourier Transforms

- So, let's take F.T of 2.36, using the differentiation theorem:

$$
\begin{aligned}
& m\left[-\omega^{2} x(\omega)\right]+i \omega \gamma m x(\omega)+m \omega_{o}^{2} x(\omega)=q E(\omega) \\
& x(\omega)\left[-m \omega^{2}+i \omega \gamma m+m \omega_{o}^{2}\right]=q E(\omega)
\end{aligned}
$$

Since q=-e:

$$
\begin{equation*}
x(\omega)=\frac{\frac{e}{m} E(\omega)}{\omega^{2}-i \gamma \omega-\omega_{o}^{2}} \tag{2.37}
\end{equation*}
$$

2.7 Differential equations and Fourier

 Transforms- Exercise: use PC to take \mathfrak{J}^{-1} of 2.37

- "damped" oscilation, $\gamma=$ damping factor
- !Problem solved

2.8 Refraction and absorption. Disperssion

- Given the electron displacement as a function of frequency, $X(\omega)$, we can define the dipole moment:

$$
\begin{gather*}
\bar{p}=q \bar{x} \\
p=-e x \tag{2.38}
\end{gather*}
$$

- The dipole moment is a microscopic quantity; we need a macroscopy counterpart:

$$
\begin{equation*}
\bar{P}=N\langle\bar{p}\rangle=\frac{-\frac{N e^{2}}{m} \cdot E}{\omega^{2}-\omega_{o}^{2}-i \gamma \omega} \tag{2.39}
\end{equation*}
$$

2.8 Refraction and absorption. Disperssion

- $\bar{P} \equiv$ induced polarization
- $\bar{N} \equiv$ concentration $\left[\mathrm{m}^{-3}\right]$
- But \bar{P} relates to the macroscopic response of the material X , i.e. eletric susceptibility:

$$
\begin{equation*}
\bar{P}=\varepsilon_{o} \chi \bar{E} \tag{2.40}
\end{equation*}
$$

- $\varepsilon_{o}=$ permeability of vacuum
- Finally, $\chi=\varepsilon_{r}-1=n^{2}-1$
- $\varepsilon_{r}=$ relative permeability
- $\mathrm{n}=\underline{\text { refractive index }}$ - If $\chi \in \mathbb{R}$, as opposed to $=\left(\begin{array}{lll}\chi_{11} & \chi_{12} & \chi_{13} \\ \chi_{21} & \chi_{22} & \chi_{23} \\ \chi_{31} & \chi_{32} & \chi_{33}\end{array}\right)$, material is

2.8 Refraction and absorption. Disperssion

- So, combining 2.39 and 2.40:

$$
\begin{equation*}
\chi=\frac{N e^{2} / m \varepsilon_{o}}{\left(\omega^{2}-\omega_{o}^{2}\right)-i \gamma \omega}=n^{2}-1 \in \mathbb{C} \tag{2.42}
\end{equation*}
$$

- For low-n materials, such as rarefied gases,

$$
\begin{align*}
& n^{2}-1=(n-1)(n+1) \simeq 2(n-1) \\
& \rightarrow n=1+\frac{N e^{2}}{2 m \varepsilon_{o}} \frac{1}{\left(\omega^{2}-\omega_{o}^{2}\right)-i \gamma \omega} \\
&=n^{\prime}+i n^{\prime \prime} \tag{2.43}
\end{align*}
$$

2.8 Refraction and absorption. Disperssion

$$
\rightarrow\left\{\begin{array}{l}
n^{\prime}=1+\frac{N e^{2}}{2 m \varepsilon_{o}} \frac{\omega^{2}-\omega_{o}^{2}}{\left(\omega^{2}-\omega_{o}^{2}\right)-\gamma^{2} \omega^{2}} \tag{2.44a}\\
n^{\prime \prime}=\frac{N e^{2}}{2 m \varepsilon_{o}} \frac{\gamma \omega}{\left(\omega^{2}-\omega_{o}^{2}\right)-\gamma^{2} \omega^{2}}
\end{array}\right.
$$

- $n^{\prime}=\operatorname{Re}(n)=$ refractive index
- $\mathrm{n} "=\operatorname{Im}(\mathrm{n})=$ absorption index

2.8 Refraction and absorption. Disperssion

- Eg: Plane wave:

$$
\begin{aligned}
& E=E_{o} e^{i \bar{k} \cdot \bar{r}} ; k=n k_{o} \\
& E=E_{o} e^{i n k_{o} r}= \\
&=E_{o} e^{i k_{o} r\left(n^{\prime}+i n^{\prime \prime}\right)} \\
& E=E_{o} e^{-n^{\prime \prime} k_{o} r} \underbrace{i n k^{\prime} k_{o} r}_{\text {absorption }} \\
& \alpha=n^{\prime \prime} k_{o}=\text { absaction }
\end{aligned}
$$

2.8 Refraction and absorption. Disperssion

- Definition: $\left[\mathrm{n}^{\prime}(\omega)=\right.$ variation of refractive index with frequency
= dispersion
$n "(\omega)=$ absorption line shape

2.8 Refraction and absorption. Disperssion

- Note the line shape:

$$
\frac{\gamma \omega}{\left(\omega^{2}-\omega_{o}^{2}\right)+\gamma^{2} \omega^{2}} \simeq \frac{1}{\gamma \omega} \frac{1}{1+\left(\frac{\left(\omega-\omega_{o}\right) 2 \omega_{o}}{\gamma \omega}\right)^{2}}=\frac{1}{\gamma \omega} \frac{1}{1+\left(\frac{\omega-\omega_{o}}{\gamma \omega / 2 \omega_{o}}\right)^{2}}
$$

- Lorentz function:

$$
\mathfrak{J}(\omega)=\frac{1}{a}\left(\frac{1}{1+(\omega / a)^{2}}\right) ; \mathrm{a}=\text { width }
$$

2.8 Refraction and absorption. Disperssion

- Thus the asorption line is a Lorentzian:

$$
\begin{aligned}
& \alpha\left(\omega ; \omega_{o}\right)=\frac{1}{\Delta \omega} \frac{1}{1+\left(\frac{\omega-\omega_{o}}{\Delta \omega}\right)^{2}} ; \Delta \omega \sim \gamma \\
& \mathfrak{J}[\alpha(\omega)]=e^{-\Delta \omega|t|}
\end{aligned} \rightarrow
$$

- The Fourier transform of a Lorentzian is an exponential!

2.8 Refraction and absorption. Disperssion

Connect to quantum mechanics:

- 2 level system:
$1 \rightarrow \mathrm{E}_{1}$

$$
\Delta E=E_{1}-E_{o}=\hbar\left(\omega_{1}-\omega_{o}\right)
$$

$0 \rightarrow \mathrm{E}_{\mathrm{o}}$

- Probability of spontaneous emission/absorption:
- $\mathrm{p}(\mathrm{t}) \sim \mathrm{e}^{-\mathrm{t} / \text { lifetime }} \rightarrow$ exponential decay
- Linewidth is Lorentz = natural linewidth
- !The model of e- on springs was introduced by Lorentz

2.9 Maxwell’s Equations

- Fully describe the propagation of EM fields
- Quantify how \hat{E} and \hat{H} generate each other

$$
\left\{\begin{array}{l}
\nabla \times \bar{E}=-\frac{\partial \bar{B}}{\partial t} \tag{2.45a}\\
\nabla \times \bar{H}=\frac{\partial \bar{D}}{\partial t}+\bar{j} \\
\nabla \bar{D}=\rho \\
\nabla \bar{B}=0
\end{array}\right.
$$

2.9 Maxwell’s Equations

- Plus material equations

$$
\left\{\begin{aligned}
\bar{D} & =\varepsilon_{o} \bar{E}+\bar{P} \\
& =\varepsilon \bar{E} \\
\bar{B} & =\mu_{o} \bar{H}+M
\end{aligned}\right.
$$

- Definitions:
$\bar{E}=$ Eletric field vectors $\quad \rho=$ charge density
$\bar{H}=$ Magnetic field vectors $\bar{j}=\sigma \bar{E}=$ current density
$\bar{D}=$ Eletric displacement $\quad \bar{P}=$ polarization
$\bar{B}=$ Magnetic inductance $\bar{M}=$ magnetization

2.9 Maxwell's Equations

- Let's combine I and II (assume no free charge: $\rho=0, \bar{j}=0$)
- Use property: $\nabla \times(\nabla \times \bar{E})=\nabla(\nabla \bar{E})-\nabla^{2} \bar{E}$
- Since $\rho=0 \Rightarrow \nabla \bar{E}=0 \Rightarrow \nabla \times(\nabla \times \bar{E})=-\nabla^{2} \bar{E}$
- Take $\nabla \times(E q I)$:

$$
\begin{align*}
& \nabla \times(\nabla \times \bar{E})=-\nabla \times\left(\frac{\partial \bar{B}}{\partial t}\right) \tag{2.46}\\
& \rightarrow-\nabla^{2} \bar{E}=\frac{\partial}{\partial t}(\nabla \times \bar{B})= \\
&=-\frac{\partial}{\partial t}\left(\mu_{o} \nabla \times \bar{H}\right)= \\
&=-\frac{\partial}{\partial t}\left(\mu_{o} \frac{\partial \bar{\Delta}}{\partial t}\right)=
\end{align*}
$$

(see next slide)

2.9 Maxwell's Equations

$$
\begin{align*}
& \begin{aligned}
\rightarrow & -\nabla^{2} \bar{E}=\frac{\partial}{\partial t}(\nabla \times \bar{B})= \\
& =-\frac{\partial}{\partial t}\left(\mu_{o} \nabla \times \bar{H}\right)= \\
& =-\frac{\partial}{\partial t}\left(\mu_{o} \frac{\partial \bar{\Delta}}{\partial t}\right)= \\
& =-\varepsilon \mu \frac{\partial^{2} E}{\partial t^{2}}
\end{aligned} \\
& \text { Thus: } \nabla^{2} \bar{E}=-\varepsilon \mu \frac{\partial^{2} E}{\partial t^{2}}=0
\end{align*}
$$

- Wave Equation

2.9 Maxwell's Equations

Note:

$$
\left\{\begin{array}{l}
\varepsilon \mu=\frac{1}{v^{2}} ; \quad v=\frac{c}{n} ; \quad \mathrm{c}=\text { speed of light in vacuum } \\
n=\sqrt{\frac{\mu \varepsilon}{\mu_{o} \varepsilon_{o}}}
\end{array}\right.
$$

- The wave equation describes the propagation of a atimedependent field (eg. pulse)
- Solution: plane wave: $E=E_{o} e^{-i(\omega t-\bar{k} \cdot \bar{r})}$
- $k=\frac{2 \pi}{\lambda}=\frac{\omega}{v}=n \frac{\omega}{c} ; \mathrm{k}=$ wave equation

2.9 Maxwell’s Equations

- Phase of the field:

$$
\begin{equation*}
\varphi=\omega t-\bar{k} \cdot \bar{r} \tag{2.48}
\end{equation*}
$$

- Note: $\varphi=$ constant describes a surface that moves with a certain velocity

$$
\begin{align*}
& \omega t-\bar{k} \cdot \bar{r}=\text { constant } \\
& \rightarrow \omega d t-k d r=0 \tag{2.49}\\
& \rightarrow \frac{d r}{d t}=\frac{\omega}{k}=v_{p}
\end{align*}
$$

The surface of constant phase is traveling with velocity:

$$
v_{p}=\frac{\omega}{k}=\text { phase velocity }
$$

2.9 Maxwell’s Equations

- What is the counterpart of the wave equation for the frequency domain?
- Well, remember $\frac{\partial}{\partial t} \xrightarrow{\mathfrak{J}} i \omega$
- Upon Fourier transforming, Eq. 2.47 becomes:

$$
\begin{aligned}
& \nabla^{2} \bar{E}-\frac{1}{v^{2}}(i \omega \cdot i \omega) E(\omega)=0 \\
& \rightarrow \nabla^{2} \bar{E}+\frac{1}{v^{2}}\left(\omega^{2}\right) E(\omega)=0
\end{aligned}
$$

- Note: $k=\frac{\omega}{v}$

$$
\begin{equation*}
\rightarrow \nabla^{2} E(\omega)+k^{2} E(\omega)=0 \tag{2.50}
\end{equation*}
$$

2.9 Maxwell’s Equations

$$
\rightarrow \nabla^{2} E(\omega)+k^{2} E(\omega)=0
$$

- The equation above is the "Helmholtz equation"
- Describes how each frequency ω propagates

