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Objectives

= Develop a set of tools useful throughout the course

Chapter 2: Math Toolbox 2



ECE 460 — Optical Imaging ]

2.1 Linear Systems

" Consider a simple system: ////
K

= Equation of motion:

] — Mass

on a

dx’ dx sprin
m——+ym—+mao, x = f(t) (2.1) pring
dt dt I
o =, |—
m

= Define Operator: (linear differential eqs)

Lzmiz+}/mi+ma)o2 (2.2)
dt dt
2| L(x)=F() (2.3)
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2.1 Linear Systems

= Operator L has important properties:
d(ax) d(ax)

a) L(ax)=m 1 +ym " + ma)02(ax) —
— a{ d;:) ym dc(;) +mo, (x)}
=al(x) (2.4)
b) L(x+y)=m d();; Y) +ym d(xdj ») + ma)az(x +y)=
= L(x)+ L() (25
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2.1 Linear Systems

= Definition: An operator obeying properties L(ax) = aL(x) and
L(x+y)=L(x)+L(y) is called linear

= Most of the system in nature are linear; well, at least to the
first approximation

» They are mathematically tractable = analytic solutions

= Consider equations:

Lix,) =0 (2.6)
L(x,) =0

—>X,, X, are solutions
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2.1 Linear Systems

= Continuing:
—->L(ax,+ bx,) = L(ax,) + L(bx,)
= alL(xq) + bL(x,)
= 0 + 0 (2.7)

= Any linear combination of solutions: x,, X, is also a
solution

= The number of independent solutions = degrees of freedom
X, X, Xy = independent solutions if
Xi '_/'_Zajxj ,for any O[J. (2.8)

J
= Linear Differential eqs of order N allow for N independent
solutions
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2.2 Light-matter interaction

= Classic model of atom: e rotating around N = planets
x=x_cos(ayl)

_______

- Lorentz Model

= Analogy : ///
J.—

—[ x=x cos(@yi) — o =, /ﬁ
m
X
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2.2 Light-matter interaction

= So, notion of charge follows the same eq (2.1)

Z;Cj + }/m% +maw x = F(t)

* Incident field drives the charge: F(¢)=qE(¢) (2.9)
" Fore,q=-e!

» Monochromatic field: E()=Ee™

> mi+ymx+mo’ =qE e (2.10)

m

= This is the eq of motion for eletric charge under incident EM
field. Can explain most of Optics!
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2.3 Superposition principle

= Suppose we have 2 fields simoultaneously interacting with
the material (Eg. w,, w,):

\ , / E, B =|Ele™ gk =F

E, —iwt (2.11)
E, =|E,|e™";qE, = F,

" Letx,, X, be solutions of displacements for the two forces F,
and F

L(X1) = F1(t)
L(x,) = F,(t)

(2.12)
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2.3 Superposition principle
= Consider the same solution:

L('xl +x2):L(x1)+L(x2) (2.13)
_F(0)+ F,(1)

= So, final solution is just the sum of individual solutions. Nice!

= This is the superposition principle /51 B
\ } -

For the 2 frequency example:

" |t's as if one applies the fields one by one and sums their results
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2.4 Green’s function/impulse response

= Let the incident field, i.e driving field, have a complicated

shape

A

A

E(t)

N

t.
|

t

—> arbitrary

= E(t) can be broken down into a sucession of short pulses, i.e
Dirac delta functions:

5(t) =-

0,t=0
1, otherwise

> E(f)= TE(r')&(t—z')dt'
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2.4 Green’s function/impulse response

= |f we know the response of the system to a short pulse, o(?),
the problem is solved

" Let h(t) be the solution to ¢(¢)
» The final solution for an arbitrary force F(t)=qE(?) is:

x(t) = [ E(C)h(c—1)dr 216

= This is the Green’s method of solving linear problems

h(t) = Green’s function or impulse response of the system
= Complicated problems become easily tractable!
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2.5 Fourier Transforms
= Very efficient tool for analyzing linear (and non-linear)

processes
u DEfinitiOn: S[f(x)] _ J‘ f(x)e—ﬂﬁxfxdx
o0 N (2.17)
=F(f,)=/1(35)
= Fisthe Fourier transform of f <
" fIA—)A;AEC,fmUSt SatiSfy: anyaz)_)(fanaé/)

a) ﬂf‘ <o - modulus integrable

b) f has finite number of discontinuities in the finite
domain A

c)f has no infinite discontinuities

» |n practice, some of these conditions are sometimes
relaxed
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2.5 Fourier Transforms

® |nverse Fourier Transforms:

S[3(£()]= [ F&e " df,

= f(x)
> J'[3(N]=f (2.19)

(2.18)

= Meaning of FT: reconstruct a complicated signal by summing
sinusoidals with proper weighting
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2.5 Fourier Transforms

= Fourier transform is a linear operator:

Slaf (x) +bg(x)] =

= [laf () + bg()le > dx =

=a f f(xX)e ™ dx+b _[ g(x)e 2" dx

=aJ]f(x)]+b3[g(x)]

Chapter 2: Math Toolbox
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2.6 Basic Theorems with Fourier Transforms

a) Shift Theorem: if 7(5) =3[ f(x)]

I{f(x—a)} = f(E)e ™ (2.21)

= Easy to prove using definition

= Eqg 2.21 suggest that a shift in one domain corresponds to a
linear phase ramp in the other (Fourier) domain
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2.6 Basic Theorems with Fourier Transforms

b) Parseval’s theorem: if J[ f(x)] = 7(5)

flref de=][7() de

= Conservation of total energy
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2.6 Basic Theorems with Fourier Transforms

c) Similarity theorem: if

J[f(x)] =7(fx) Ji.e. 7 is the F.T of 1

[ f(ax)]=— 7

a|

|

S

A

|

= Theorem 2.23 provides intuitive feeling for F.T

m |Let’s consider

Chapter 2: Math Toolbox
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2.6 Basic Theorems with Fourier Transforms

c) Similarity theorem:

® |Let’s consider:

f(x)t f(f)
)
A — A
; tx
S ()t f(f)1
@/
20X N ‘\Sﬁ
\ ax
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2.6 Basic Theorems with Fourier Transforms

c) Similarity theorem:

= | Broader functions in one domain implies narrower functions
in the other domain and vice-versa

= Eg. To obtain short temporal pulses of light, one needs a broad
spectrum (Ti: Saph laser)

= | Only an infinite spectrum allows for d-functions pulses

s(w)

(1)
)
RN
w t

= Physically Impossible
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2.6 Basic Theorems with Fourier Transforms

= Before we present the last theorems, we introduce the
definitions of convolution and correlation

" |et
g(x) = G(&)
h(x) —S H(E)
= Convolution of g and h:

g@h= [ g(x)h(x—x)dx (2.24)
= Correlation of g and h

g®h= | g(x)h(x —x)dx (2.25)
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2.6 Basic Theorems with Fourier Transforms

= Difference between® and ®is h(x-x’) vs h(x’-x), i.e. flip vs
non-flip of h

= Particular case:
= Autocorrelation: g=h

g®g= j g(x)g(x —x)dx (2.26)

= Exercise: Use PC to show:

(X)) e =_/\

A ) =

Gauss @Gauss = Gauss
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2.6 Basic Theorems with Fourier Transforms

d) Convolution theorem:

g @hl=GH Y

e 3 [ g@)h(x—x)dx]1= GH(E)

= Convolution in one domain corresponds to a product in the
other. Nice!

= Multiplication is always easy to do

= Recall Green’s function: h(t) = the response to a 5-function
light pulse
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2.6 Basic Theorems with Fourier Transforms

= We found (Eq 2.16):
x(1)= [ E(t)h(t—1t)dt

i.e the response to an arbitrary field E(t) is the convolution
E@h!
= Let’s take the FT:
x(w) = E(o)h(w) (2.28)
= It doesn’t get any simpler than this

i.e if we know the impulse response h(t), (or the Green’s
function) take FT = h(w) = transfer function = response to any

field E is: x(t) = S[E(0)h(o)] (2.29)
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2.6 Basic Theorems with Fourier Transforms

e) Correlation theorem:

= R differs from ) only by minus sign = similar theorem:

e ® h]=GH'

o (2.30)
e J[[ g()h(x —x)dx 1=G(HH (&)
— Particular case: g = h (auto correlation):
(2.31)

g ®gl=GG =|G[

Chapter 2: Math Toolbox
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2.6 Basic Theorems with Fourier Transforms

e) Correlation theorem:

= Eg: F.T of an auto correlation is the power spectrum
= Very important for both time and space fluctuating fields:

I'(¢)= I E(t"YE(t'-t)dt = auto correlation
bt (2.32)

J[T(#)]= E(w)E () = S(w) = power spectrum

(Wiener—Khinchin theorem)

= We’ll meet them again later!
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2.7 Differential equations and Fourier

Transforms
= et f be afunction of time:

(1) = Of F(o)e™do=5"(F)

- (2.33)
= What is @ ?
Ot
of 0 % .
= F(w)e“dwl=
Ot 5t[J;o (@)e :
% O .
= | F(w)—[e“"ldw =
i (w) at[e ]
= _. [ioF (w)]e”"dw
3 fior]

= So f—)F& a%t—n'a)F
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2.7 Differential equations and Fourier

Transforms
=" Great:
C3[f(H)]=F(w) . Then:
i (2.34)
of (t .
_S[%] —i0F () > useful
f (af)]—za)za)F(a))
= —a)zF(a))
~ 0 f
In others words: |3 Py =i"w"F(w) (2.35)

= Differentiation theorem

Chapter 2: Math Toolbox
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2.7 Differential equations and Fourier
Transforms

= Why 2.35 result is important? Because linear differential
equations are resolved in the frequency domain more easily

= Eg: Recall our e  revolving around nucleus under field
illumination E(t)

2
d xgt) o 0
dt dt

= The solution is x(t). But we can solve for
x(w)=J3[x(¢)] and take " in the end

+maw  x(t)=qE(t) (2.36)

m
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2.7 Differential equations and Fourier
Transforms

= S0, let's take F.T of 2.36, using the differentiation
theorem:

m[—w’x(®)] + ioymx(®) + mo *x(®) = gE(w)

x(@)[-mo® +ioym+mw )= qE(®)

Since g=-e:

e
%E(a)) (2.37)
2

o —iyw—’

x(w) =
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2.7 Differential equations and Fourier
Transforms

» Exercise: use PC to take 3 of 2.37

= “damped” oscilation,?” = damping factor
= IProblem solved
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I

2.8 Refraction and absorption. Disperssion

= Given the electron displacement as a function of
frequency, X(w), we can define the dipole moment:

p=qgx

p=-ex

(2.38)

= The dipole moment is a microscopic quantity; we need a

macroscopy counterpart:

Chapter 2: Math Toolbox
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2.8 Refraction and absorption. Disperssion

» P = induced polarization
= N/ = concentration [m]

= But P relates to the macroscopic response of the
material X, i.e. eletric susceptibility:

P=¢ yE (2.40)
= & = permeability of vacuum
u FinaIIy, X=E& — = I/l2 —1 (2.41)
= &, = relative permeability
» n = refractive index /;(11 47 le\

» If ¥ €R, as opposed to y = Xoi X X |, material is
A A A Isotropic
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2.8 Refraction and absorption. Disperssion

= S0, combining 2.39 and 2.40:

Ne’ | me,
¥ =

=— — =n"—-1eC (2.42)
(0" —w,)-iyw

* For low-n materials, such as rarefied gases,
n—l=(n-Dn+D)=2(n-1)
Ne’ ]

> n=1+
2me (0" —w’)—iyw

=n + ln (2.43)
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2.8 Refraction and absorption. Disperssion

1 Ne’ o -’
e 2me (0" —0°)—y’w’ (24
9 | (0] o
. Ne’ 20,
n=_ @ o)) (2.44b)

* n' = Re(n) = refractive index
* n" =Im(n) = absorption index
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2.8 Refraction and absorption. Disperssion

= Eqg: Plane wave:

E = Eoe%;;k = nk,

. ink r __
E=Ee" =
_ ik,r(n +in

=F e

E = Eoe—n"korein'kor
\ )

]

|

absorption

a = n k, = absorption coefficient

Chapter 2: Math Toolbox
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2.8 Refraction and absorption. Disperssion

—

= Definition: | n'(w) = variation of refractive index with
frequency

= dispersion
n'(w) = absorption line shape

—

A 0o
dw>0 'g_(r:)<0: ddur;>0
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2.8 Refraction and absorption. Disperssion

= Note the line shape:

20, 1 1 1 1
(0 -0 )+y'o  yo ((a)—a))Za) jz y (a)—a) T
1+ 0l ¢ 1+ 0
Y@ yo!2o,

= | orentz function:

NI L
\S(a))_a[l+(a)/a)2] ; @ = width
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I

2.8 Refraction and absorption. Disperssion

* Thus the asorption line is a Lorentzian:

a(w;,)) = : : =
Aw (a)—a) j
1+
Aw
Sa@)= ">

e ()

\

t

®= The Fourier transform of a Lorentzian is an exponential!

Chapter 2: Math Toolbox
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2.8 Refraction and absorption. Disperssion

Connect to quantum mechanics:

= 2 |evel system:

1 = E
0 = E,
= Probability of spontaneous emission/absorption:

AE=E -FE =h(o,—w)

= p(t) ~ ettlifetime 5 exponential decay

= Linewidth is Lorentz = natural linewidth

= |IThe model of e on springs was introduced by Lorentz

Chapter 2: Math Toolbox
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2.9 Maxwell’s Equations

= Fully describe the propagation of EM fields
= Quantify how £ and i generate each other

VxE=-2"
ot

IVxH="+ I (2.45a)

Chapter 2: Math Toolbox
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2.9 Maxwell’s Equations

= Plus material equations

D=cE+P v
4 =¢E
B=uH+M vi

—

= Definitions:

E = Eletric field vectors

D = Eletric displacement

B = Magnetic inductance

Chapter 2: Math Toolbox

P = charge density

H = Magnetic field vectors j = o E = current density

P = polarization

M = magnetization
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2.9 Maxwell’s Equations

» Let’s combine | and Il (assume no free charge: =0, j =0)
= Use property: Vx(Vx E)=V(VE)-V’E
» Since P=0=>VE=0=|Vx(VXxE)=-V’E
Take V x (Eql): B
oB

Vx(VxE)=-Vx| — _
( ) (atj (2.46)

5> vVE=2(VxEB)-=
Ot

=S,y < H) =
ot . (see next slide)

0, A
ot Ho ot
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2.9 Maxwell’s Equations
S
> VE=—(VxB)=

%, _
=~ (uVxH)=

Thus: |V’E = —su

=0 (2.47)

= Wave Equation

Chapter 2: Math Toolbox
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2.9 Maxwell’s Equations

Note:
gluziz; p=C ; c=speed of light in vacuum
1% n
| g
n= |
ﬂOEO

= The wave equation describes the propagation of a atime-

dependent field (eg. pulse)

= Solution: plane wave: E = Eoe_i(“”_k"”)

" _27 _®_ ®; k=wave equation
v o oc

Chapter 2: Math Toolbox
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2.9 Maxwell’s Equations

= Phase of the field:
0=t —kr

(2.48)

= Note: @ = constant describes a surface that moves with a

certain velocity

wt — % ; = constant

> wdt —kdr =0
S| dr_o_
d k 7

eq of planes | &

k
(2.49) >

<«— wave front

The surface of constant phase is traveling with velocity:

@

p
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2.9 Maxwell’s Equations

= What is the counterpart of the wave equation for the
frequency domain?
03

= Well, remember a—ﬁa)

= Upon Fourier transforming, Eq. 2.47 becomes:
— 1
V’E - —(iwio)E(w) =0
1%
— 1
2> VE+ —Z(a)z)E(a)) =0
1%

0,
= Note: k=—
N

> VE(w)+ Kk E(w)=0 (2.50)

Chapter 2: Math Toolbox
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2.9 Maxwell’s Equations

> VE)+kE(w)=0
= The equation above is the “Helmholtz equation”
= Describes how each frequency w propagates
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