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� Develop a set of tools useful throughout the course

Objectives
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� Consider a simple system:

� Equation of  motion:

2.1 Linear Systems

2

2

2
( )

o

dx dx
m m m x f t
dt dt

γ ω+ + =
k

(2.1)

m

k
Mass 

on a 

spring
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� Define Operator: (linear differential eqs)

�

dt dt

o

k

m
ω =

2

2 o

d d
L m m m

dt dt
γ ω= + + (2.2)

( ) ( )L x F t= (2.3)
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� Operator L has important properties:

a)

2.1 Linear Systems

2

2

( ) ( )
( ) ( )

o

d ax d ax
L ax m m m ax

dt dt
γ ω= + + =

2

2

( ) ( )
( )

o

d x d x
a m m m x

dt dt
γ ω = + + =  
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b)
2

2

( ) ( )
( ) ( )

o

d x y d x y
L x y m m m x y

dt dt
γ ω

+ +
+ = + + + =

( ) ( )L x L y= +

( )aL x= (2.4)

(2.5)
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� Definition: An operator obeying properties L(ax) = aL(x) and 

L(x+y)=L(x)+L(y) is called linear

� Most of the system in nature are linear; well, at least to the 

first approximation

� They are mathematically tractable � analytic solutions

2.1 Linear Systems
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� They are mathematically tractable � analytic solutions

� Consider equations:

L(x1) = 0

L(x2) = 0

�x1, x2 are solutions

(2.6)
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� Continuing:

�L(ax1+ bx2) = L(ax1) + L(bx2)

= aL(x1) + bL(x2)

=     0     +     0  

� Any linear combination of solutions: x , x is also a 

2.1 Linear Systems

(2.7)
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� Any linear combination of solutions: x1, x2 is also a 

solution

� The number of independent solutions  = degrees of freedom

= independent solutions if

, for any

� Linear Differential eqs of order N allow for N independent 

solutions

1 2
, ,...,

N
X X X

i j j
j i

X xα
≠

≠ ∑
j

α (2.8)
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� Classic model of atom: e- rotating around N ≈ planets

2.2 Light-matter interaction

y

+ x

e
-
, m

m
_

x(t)

t

x
0

0 0cos( )x x tω=
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� Lorentz Model

� Analogy :

o

k

m
ω =

x

w
0 0cos( )x x tω=

7Chapter 2: Math Toolbox



� So, notion of charge follows the same eq (2.1)

� Incident field drives the charge:

� For e-, q = -e !

2.2 Light-matter interaction

2

2

2
( )

o

dx dx
m m m x F t
dt dt

γ ω+ + =

( ) ( )F t qE t= (2.9)
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� For e-, q = -e !

� Monochromatic field:

�

� This is the eq of motion for eletric charge under incident EM 

field. Can explain most of Optics!

( ) i t

o
E t E e ω−=

2 i t

o o
mx mx m qE e ωγ ω −+ + =�� � (2.10)
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� Suppose we have 2 fields simoultaneously  interacting with 

the material (Eg. ω1, ω2):

2.3 Superposition principle

1

2

1 1

2 2

i t

i t

E E e

E E e

ω

ω

−

−

=

=
1 1

2 2

;

;

qE F

qE F

=

=
(2.11)E1

E2
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� Let x1, x2 be solutions of displacements for the two forces F1

and F2

L(x1) = F1(t)

L(x2) = F2(t)

2 2E E e= 2 2
;qE F=

(2.12)
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� Consider the same solution:

� So, final solution is just the sum of individual solutions. Nice!

� This is the superposition principle

2.3 Superposition principle

1 2 1 2
( ) ( ) ( )L x x L x L x+ = +

1 2
( ) ( )F t F t= +

(2.13)

E

E1
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� For the 2 frequency example:

� It’s as if one applies the fields one by one and sums their results

E

E2
E
1

E
2

+

E
1

E
2

x
1

x
2

1
x
2

+x
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� Let the incident field, i.e driving field, have a complicated 

shape

2.4 Green’s function/impulse response

� arbitrary

E(t)
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� E(t) can be broken down into a sucession of short pulses, i.e 

Dirac delta functions:

0, t = 0

1, otherwise
( )tδ =

(2.14)

' ' '( ) ( ) ( )E t E t t t dtδ
∞

−∞

= −∫ (2.15)�

tt
i
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� If we know the response of the system to a short pulse,        , 

the problem is solved

� Let h(t) be the solution to 

� The final solution for an arbitrary force is:

2.4 Green’s function/impulse response

( )tδ

( )tδ
( ) ( )F t qE t=

∞
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� This is the Green’s method of solving linear problems

� h(t) = Green’s function or impulse response of the system

� Complicated problems become easily tractable!

' ' '( ) ( ) ( )x t E t h t t dt
∞

−∞

= −∫ (2.16)
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� Very efficient tool for analyzing  linear (and non-linear) 

processes

� Definition: 

� F is the Fourier transform of f

2.5 Fourier Transforms

2
[ ( )] ( ) xi xf
f x f x e dx

π
∞

−

−∞

ℑ = ∫
�( ) ( )

x
F f f ξ= =

(2.17)
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� F is the Fourier transform of f

� , f must satisfy:

a) - modulus integrable

b) f has finite number of discontinuities in the finite 

domain

c) f has no infinite discontinuities

� In practice, some of these conditions are sometimes 

relaxed

: ;f ∆ → ∆ ∆∈�

∆

f < ∞∫
( , , ) ( , , )x y z ξ η ζ→ℑ
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� Inverse Fourier Transforms:

2.5 Fourier Transforms

( ) � 21 ( ) ( ) xi xf

x
f x f e df

πξ
∞

+−

−∞

ℑ ℑ =   ∫

( )f x=
(2.18)
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�

� Meaning of F.T: reconstruct a complicated signal by summing 

sinusoidals with proper weighting

( )f x=
1[ ( )]f f−ℑ ℑ = (2.19)
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� Fourier transform is a linear operator:

2.5 Fourier Transforms

2

[ ( ) ( )]

[ ( ) ( )] i x

af x bg x

af x bg x e dxπ ξ
∞

−

ℑ + =

= + =∫
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2 2

[ ( ) ( )]

( ) ( )

[ ( )] [ ( )]

i x i x

af x bg x e dx

a f x e dx b g x e dx

a f x b g x

π ξ π ξ

−∞

∞ ∞
− −

−∞ −∞

= + =

= +

= ℑ + ℑ

∫

∫ ∫
(2.20)
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a) Shift Theorem: if 

� Easy to prove using definition

� Eq 2.21 suggest that a shift in one domain corresponds to a 

2.6 Basic Theorems with Fourier Transforms

(2.21)

�( ) [ ( )]f f xξ = ℑ

� 2{ ( )} ( ) i af x a f e πξξ −ℑ − =
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� Eq 2.21 suggest that a shift in one domain corresponds to a 

linear phase ramp in the other (Fourier) domain
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b) Parseval’s theorem: if 

� Conservation of total energy

2.6 Basic Theorems with Fourier Transforms

(2.22)

�[ ( )] ( )f x f ξℑ =

�
22

( ) ( )f x dx f dξ ξ
∞ ∞

−∞ −∞

=∫ ∫
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� Conservation of total energy
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c) Similarity theorem: if 

, i.e.      is the F.T of 

2.6 Basic Theorems with Fourier Transforms

(2.23)

�[ ( )] ( )
x

f x f fℑ =

�1[ ( )]
| |

f ax f
a a

ξ ℑ =  
 

�f f
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� Theorem 2.23 provides intuitive feeling for F.T

� Let’s consider

| |a a 
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c) Similarity theorem:

� Let’s consider:

2.6 Basic Theorems with Fourier Transforms

∆fx

�( )xf f

∆x

( )f x

ℑ
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(Figures pageII-8)

x fx

x

∆fx

fx

∆fx
2

�( )xf f

2∆x

( )f x

∆x

ℑ
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c) Similarity theorem:

� ! Broader functions in one domain implies narrower functions 

in the other domain and vice-versa

� Eg. To obtain short temporal pulses of light, one needs a broad 

spectrum (Ti: Saph laser) 

2.6 Basic Theorems with Fourier Transforms

ECE 460 – Optical Imaging

spectrum (Ti: Saph laser) 

� ! Only an infinite spectrum allows for   -functions pulses

(Figures pageII-8)

�Physically Impossible

δ

s(ω)

ω

I(t)

t

ℑ
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� Before we present the last theorems, we introduce the 

definitions of convolution and correlation

� Let

g(x) G(   )

h(x) H( )

2.6 Basic Theorems with Fourier Transforms

ℑ
ℑ

ξ
ξ
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h(x) H( )

� Convolution of g and h:

� Correlation of g and h

' ' '( ) ( )g h g x h x x dx
∞

−∞

= −∫�

ℑ

' ' '( ) ( )g h g x h x x dx
∞

−∞

⊗ = −∫

(2.24)

(2.25)

ξ
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� Difference between     and     is h(x-x’) vs h(x’-x), i.e. flip vs 

non-flip of h

� Particular case:

� Autocorrelation:  g=h

2.6 Basic Theorems with Fourier Transforms

v�⊗

∞

⊗ = −∫
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� Exercise: Use PC to show:

(Figures page II-9)

(2.26)
' ' '( ) ( )g g g x g x x dx

∞

−∞

⊗ = −∫

x =

Gauss x Gauss = Gauss

=x
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d) Convolution theorem:

i.e

2.6 Basic Theorems with Fourier Transforms

[ ]g h GHℑ =�v (2.27)

' ' '[ ( ) ( ) ] ( ) ( )g x h x x dx G Hξ ξ
∞

−∞

ℑ − =∫
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� Convolution in one domain corresponds to a product in the 

other. Nice!

� Multiplication is always easy to do

� Recall Green’s function: h(t) = the response to a   -function 

light pulse

δ

−∞
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� We found (Eq 2.16):

i.e the response to an arbitrary field E(t) is the convolution 

E    h!

2.6 Basic Theorems with Fourier Transforms

' ' '( ) ( ) ( )x t E t h t t dt
∞

−∞

= −∫
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E    h!

� Let’s take the F.T:

� It doesn’t get any simpler than this

i.e if we know the impulse response h(t), (or the Green’s 

function) take F.T � h(ω)     transfer function � response to any 

field E is:

( ) ( ) ( )x E hω ω ω= (2.28)

≡

( ) [ ( ) ( )]x t E hω ω= ℑ (2.29)
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e) Correlation theorem:

� differs from      only by minus sign � similar theorem:

i.e

2.6 Basic Theorems with Fourier Transforms

(2.30)

*[ ]g h GHℑ ⊗ =
⊗

' ' ' *[ ( ) ( ) ] ( ) ( )g x h x x dx G Hξ ξ
∞

−∞

ℑ − =∫
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� Particular case: g = h (auto correlation):

−∞

2*[ ]g g GG Gℑ ⊗ = = (2.31)
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e) Correlation theorem:

� Eg: F.T of an auto correlation is the power spectrum

� Very important for both time and space fluctuating fields:

2.6 Basic Theorems with Fourier Transforms

( ) ( ') ( ' )t E t E t t dt
∞

Γ = −∫ = auto correlation
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� We’ll meet them again later!

( ) ( ') ( ' )t E t E t t dt
−∞

Γ = −∫
*[ ( )] ( ) ( ) ( )t E E Sω ω ωℑ Γ = =

= auto correlation

= power spectrum
(Wiener–Khinchin theorem)

(2.32)
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� Let f be a function of time:

� What is ?

2.7 Differential equations and Fourier 

Transforms

1( ) ( ) ( )i tf t F e d Fωω ω
∞

+ −

−∞

= = ℑ∫ (2.33)

f

t

∂
∂

[ ( ) ]i tf
F e dωω ω

∞∂ ∂
= =∫
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� So, & 

[ ( ) ]i tf
F e d

t t

ωω ω
−∞

∂ ∂
= =

∂ ∂ ∫

( ) [ ]i tF e d
t

ωω ω
∞

−∞

∂
= =

∂∫

[ ( )] i ti F e dωω ω ω
∞

−∞

= ∫
(2.34)[ ]1 i Fω−= ℑ

f F→ f
i F

t
ω∂ →∂
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� Great:

. Then:

� useful

2.7 Differential equations and Fourier 

Transforms

[ ( )] ( )f t F ωℑ =

( )
[ ] ( )
f t

i F
t

ω ω
∂

ℑ =
∂

(2.34)

ECE 460 – Optical Imaging

� Now

In others words:

� Differentiation theorem

t∂
2

2
[ ] [ ( )] ( )
f f

i i F
t t t

ω ω ω
∂ ∂ ∂

ℑ = ℑ =
∂ ∂ ∂

2 ( )Fω ω= −

[ ] ( )
n

n n

n

f
i F

t
ω ω

∂
ℑ =

∂
(2.35)
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� Why 2.35 result is important? Because linear differential 

equations are resolved in the frequency domain more easily

� Eg: Recall our e- revolving around nucleus under field 

illumination E(t)

2.7 Differential equations and Fourier 

Transforms

2

2( ) ( )
( ) ( )

d x t dx t
m m m x t qE tγ ω+ + =
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� The solution is x(t). But we can solve for 

x(ω)= and take        in the end

2

2

( ) ( )
( ) ( )

o

d x t dx t
m m m x t qE t
dt dt

γ ω+ + = (2.36)

[ ( )]x tℑ 1−ℑ
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� So, let’s take F.T of 2.36, using the differentiation 

theorem:

2.7 Differential equations and Fourier 

Transforms

2 2

2 2

[ ( )] ( ) ( ) ( )

( )[ ] ( )

o

o

m x i mx m x qE

x m i m m qE

ω ω ωγ ω ωω ω

ω ω ωγ ω ω

− + + =

− + + =
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Since q=-e:

( )[ ] ( )
o

x m i m m qEω ω ωγ ω ω− + + =

2 2

( )

( )
o

e
E

mx
i

ω
ω

ω γω ω
=

− −
(2.37)
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� Exercise: use PC to take      of 2.37

2.7 Differential equations and Fourier 

Transforms

1−ℑ

ECE 460 – Optical Imaging

� “damped” oscilation,   = damping factor

� !Problem solved

γ

31Chapter 2: Math Toolbox



� Given the electron displacement as a function of 

frequency, X(ω), we can define the dipole moment:

2.8 Refraction and absorption. Disperssion

p qx

p ex

=

= − (2.38)
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� The dipole moment is a microscopic quantity; we need a 

macroscopy counterpart:

p ex= −

2

2 2

.

o

Ne
E

mP N p
iω ω γω

−
= =

− −
(2.39)
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� induced polarization

� concentration [m-3]

� But     relates to the macroscopic response of the 

material X, i.e. eletric susceptibility:

2.8 Refraction and absorption. Disperssion

P ≡

N ≡
P

P Eε χ=
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� = permeability of vacuum

� Finally, 

� = relative permeability

� n = refractive index

� If          , as opposed to                                  , material is  
isotropic

o
P Eε χ= (2.40)

o
ε

21 1
r

nχ ε= − = −
r

ε
(2.41)

χ ∈�
11 12 13

21 22 23

31 32 33

χ χ χ
χ χ χ χ

χ χ χ

 
 =  
 
 
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� So, combining 2.39 and 2.40:

� For low-n materials, such as rarefied gases,

2.8 Refraction and absorption. Disperssion

2

2

2 2

/
1

( )

o

o

Ne m
n

i

ε
χ

ω ω γω
= = − ∈

− −
� (2.42)
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� For low-n materials, such as rarefied gases,

�

2 1 ( 1)( 1) 2( 1)n n n n− = − + −�

2

2 2

1
1
2 ( )

o o

Ne
n

m iε ω ω γω
= +

− −
' "n in= + (2.43)
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�

2.8 Refraction and absorption. Disperssion

(2.44b)

2 2 2

'

2 2 2 2

2

"

2 2 2 2

1
2 ( )

2 ( )

o

o o

o o

Ne
n

m

Ne
n

m

ω ω
ε ω ω γ ω

γω
ε ω ω γ ω

−
= +

− −

=
− −

(2.44a)
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� n’ = Re(n) = refractive index

� n” = Im(n) = absorption index

2 ( )
o o

mε ω ω γ ω− −
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� Eg: Plane wave:

2.8 Refraction and absorption. Disperssion

;

o

i k r
o o

ink r
o

E E e k nk

E E e

⋅= =

= =
' "( )ik r n in

E e
+=
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absorption coefficient

( )
o

ik r n in
oE e

+=
" '

o o
n k r in k r

oE E e e
−=

absorption refraction

"

o
n kα = =
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� Definition: n’(ω) = variation of refractive index with 

frequency 

= dispersion

n”(ω) = absorption line shape

2.8 Refraction and absorption. Disperssion

n’’(ω)
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(Figure page II-16) 

ω

1

n’,n’’

ω
0

n’’(ω)

n’(ω)

dn’
dω > 0

dω > 0
dn’

dn’
dω<0
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� Note the line shape:

2.8 Refraction and absorption. Disperssion

2 22 2 2 2

1 1 1 1

( ) ( )2
1 1

/ 2

o o o o

o

γω
ω ω γ ω γω γωω ω ω ω ω

γω γω ω

=
− +    − −+ +   

   

�
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� Lorentz function:

; a = width

/ 2
o

γω γω ω   

2

1 1
( )

1 ( / )a a
ω

ω
 

ℑ =  + 
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� Thus the asorption line is a Lorentzian:

2.8 Refraction and absorption. Disperssion

2

1 1
( ; ) ;

1

o

o

α ω ω ω γ
ω ω ω

ω

= ∆
∆ − +  ∆ 

∼

e
-(t)
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�

� The Fourier transform of a Lorentzian is an exponential!

ω∆ 

[ ( )]
t

e
ωα ω −∆ℑ =

t

e
-(t)
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Connect to quantum mechanics:

� 2 level system:

1   � E1

0   � Eo

� Probability of spontaneous emission/absorption:

2.8 Refraction and absorption. Disperssion

1 1
( )

o o
E E E ω ω∆ = − = −�

ECE 460 – Optical Imaging

� Probability of spontaneous emission/absorption:

� p(t)      e-t/tlifetime � exponential decay

� Linewidth is Lorentz = natural linewidth

� !The model of e- on springs was introduced by Lorentz

∼
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� Fully describe the propagation of EM fields

� Quantify how     and      generate each other

2.9 Maxwell’s Equations

Ê Ĥ

B
E

t

∂
∇× = −

∂

∂

I
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0

D
H j

t

D

B

ρ

∂
∇× = +

∂

∇ =

∇ =

II

III

IV

(2.45a)
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� Plus material equations

2.9 Maxwell’s Equations

o

o

D E P

B H M

ε

µ

= +

= +

Eε=

V

VI
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� Definitions:

Eletric field vectors charge density

Magnetic field vectors = current density

Eletric displacement polarization

Magnetic inductance magnetization

o
B H Mµ= +

E =
H =

D =
B =

ρ =

j Eσ=

P =

M =
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� Let’s combine I and II (assume no free charge:    = 0,     =0)

� Use property:

� Since  

� Take 

2.9 Maxwell’s Equations

ρ j
2( ) ( )E E E∇× ∇× =∇ ∇ −∇

20 0 ( )E E Eρ = ⇒ ∇ = ⇒∇× ∇× = −∇

( ) :EqI∇×
B∂ 
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�

( )
B

E
t

∂ 
∇× ∇× = −∇× ∂ 

(2.46)

2 ( )E B
t

∂
−∇ = ∇× =

∂

( )

( )

o

o

H
t

t t

µ

µ

∂
= − ∇× =

∂
∂ ∂∆

= − =
∂ ∂

(see next slide)
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�

2.9 Maxwell’s Equations

( )

( )

o
H

t
µ

µ

∂
= − ∇× =

∂
∂ ∂∆

= − =

2 ( )E B
t

∂
−∇ = ∇× =

∂
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Thus:

� Wave Equation

2

2

( )
o

t t

E

t

µ

εµ

= − =
∂ ∂

∂
= −

∂

2

2

2
0

E
E

t
εµ

∂
∇ = − =

∂
(2.47)
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Note: 

; ;       c = speed of light in vacuum

2.9 Maxwell’s Equations

2

1

v

n

εµ

µε
µ ε

=

=

c
v
n

=

ECE 460 – Optical Imaging

� The wave equation describes the propagation of a atime-

dependent field (eg. pulse)

� Solution: plane wave: 

� ;  k = wave equation

o o
µ ε

( )i t k r
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� Phase of the field:

� Note:      = constant describes a surface that moves with a 

certain velocity

constant    eq of planes     

2.9 Maxwell’s Equations

t k rϕ ω= − ⋅
ϕ

t k rω − ⋅ = ⊥ k

(2.48)
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constant    eq of planes     
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The surface of constant phase is traveling with velocity:

phase velocity
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� What is the counterpart of the wave equation for the 

frequency domain?

� Well, remember

� Upon Fourier transforming, Eq. 2.47 becomes:
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�

� Note:
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�

� The equation above is the “Helmholtz equation”

� Describes how each frequency ω propagates

2.9 Maxwell’s Equations
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