PN Diode Exercise: Graded Junction

Dragica Vasileska and Gerhard Klimeck (ASU, Purdue)

This example is a demonstration of the fact that explicit numerical integration methods are incapable of solving even the problem of linearly-graded junctions in thermal equilibrium, for which $N_D - N_A = mx$, where *a* is the edge of the depletion region. To demonstrate this, calculate the following:

- (a) Establish the boundary conditions for the electrostatic potential $[\psi(-a) \text{ and } \psi(a)]$ by taking into account the free carrier terms in the equilibrium 1D Poisson equation:
- (b) Solve analytically the 1D Poisson equation for ψ(x) within the depletion approximation (no free carriers) and calculate *a* using this result as well as the boundary conditions found in (a). What is the expression for the absolute value of the maximum electric field?
- (c) Apply the explicit integration method for the numerical solution of the 1D Poisson equation (that includes the free carriers) by following the steps outlined below:
 - Write a Taylor series expansion for $\psi(x)$ around *x*=0, keeping the terms up to the fifth order.
 - Starting from the equilibrium Poisson equation, analytically calculate

$$\psi^{(0)}(0), \ \psi^{(3)}(0), \ \psi^{(4)}(0) \text{ and } \ \psi^{(5)}(0)$$

- Use the maximum value of the electric field derived in (b) to determine from the Taylor series expansion for $\psi(x)$, the terms $\psi(h)$, $\psi(2h)$ and $\psi(3h)$.
- Compute $\psi(x)$ at x=4h,5h,6h, ..., up to x_{max} =0.5um, using the predictorcorrector method in which the predictor formula:

$$\psi_{i+1} = 2\psi_{i-1} - \psi_{i-3} + 4h^2 \left(\psi_{i-1} + \frac{\psi_i^{"} - 2\psi_{i-1}^{"} + \psi_{i-2}^{"}}{3}\right)$$

is applied to predict ψ_{i+1} , which is then corrected by the corrector formula:

$$\psi_{i+1} = 2\psi_i - \psi_{i-1} + h^2 \left(\psi_i^{"} + \frac{\psi_{i+1}^{"} - 2\psi_i^{"} + \psi_{i-1}^{"}}{12} \right)$$

In both, the predictor and the corrector formulas, the second derivatives are obtained from the Poisson's equation. The role of the predictor is to provide ψ_{i+1} " that appears in the corrector formula.

• Repeat the above procedure for the following values of the first derivative:

$\psi(0) = \psi(0)$	•	Trial 1:	$\psi'(0)_1 = \psi'(0),$
---------------------	---	----------	--------------------------

- Trial 2: $\psi'(0)_2 = \psi'(0)_1/2$
- Trial 3: $\psi'(0)_3=0.5[\psi'(0)_1+\psi'(0)_2].$

Repeat the above-described process for several iteration numbers, say up to n=22. Comment on the behavior of this explicit integration scheme. Use the following parameters in the numerical integration:

$$e=1.602\times10^{-19}$$
 C, $\varepsilon=12\varepsilon_0=1.064\times10^{-12}$ F/cm, T=300K,
 $n_i=1.4\times10^{10}$ cm⁻³, $m=10^{21}$ cm⁻⁴, $h=2\times10^{-7}$ cm.