Overview of Phase Contrast & High resolution TEM

Lecture 14

Incident electron wave	
Sample (very thin!)	
Transmitted & Diffracted waves	

Transmitted & diffracted waves each have a different phase

Result is an interference pattern - our 'phase contrast' or HREM image

Incident electron wave	
Sample (very thin!)	
Transmitted & Diffracted waves	

Transmitted & diffracted waves each have a different phase

Result is an interference pattern - our 'phase contrast' or HREM image

Why are the phases different?

Transmitted & diffracted waves are allowed wave functions in the crystal

 Together they form the "Exit Wave" which leaves the crystal

They solve Schrödinger's Equation $\nabla^{2}\psi\left(\stackrel{r}{\mathbf{r}}\right) + \frac{8\pi m e}{h^{2}}\left[E + V\left(\stackrel{r}{\mathbf{r}}\right)\right]\psi\left(\stackrel{r}{\mathbf{r}}\right) = 0$ Solutions are Bloch Waves: $b^{(j)}\left(\stackrel{r}{\mathbf{k}}^{(j)}, \stackrel{r}{\mathbf{r}}\right) = \sum_{g} C_{g}^{(j)} \operatorname{gexp}\left[2\pi i\left(\stackrel{r}{\mathbf{k}}^{(j)} + \stackrel{r}{g}\right)\stackrel{r}{\mathbf{r}}\right]$ Amplitude term Phase term

Looking at these Bloch waves:

$$\mathbf{b}^{(j)}\left(\vec{\mathbf{r}}\right) = \sum_{g} \mathbf{C}_{g}^{(j)} \operatorname{gexp}\left[2\pi i\left(\mathbf{k}^{(j)} + \mathbf{g}\right)\mathbf{r}\right]$$

Phase term has to do with the strength & spacing of the periodic potential of the lattice along a given direction in the crystal (g)

Different diffracted waves have different phase shifts

The total "Exit Wave" is thus the sum over all of the Bloch waves

$$\psi_{\text{total}} = \sum_{j=1}^{n} \mathcal{A}^{(j)} \psi^{(j)} = \sum_{j=1}^{n} \mathcal{A}^{(j)} \mathbf{b} \left(\mathbf{k}^{(j)}, \mathbf{r} \right)$$

Incident electron wave	
Sample	
(very thin!)	
Transmitted & Diffracted waves	

- So, appears "simple" enough ...
- (1) Calculate the phase differences for the different diffracted waves
- (2) Create an interference pattern from the overlap of these phases in two-dimensions

Not even this "simple"

The TEM has very poor lenses

 Spherical aberration in particular

This aberration causes diffracted waves to be 'phase shifted' by the objective lens

- Complex dependence on wavelength, $C_{s,}$ diffraction vector and defocus
- Magnitude of shift varies with distance from optic axis
 - And thus diffraction angle
 - Thus each diffracted wave undergoes a different phase shift

Complicates image interpretation

Incident electron wave	
Sample (very thin!)	
Transmitted & Diffracted waves	

Returning to this picture

This means that the phases of the diffracted waves are changed by the objective lens focus

Not even this "simple"

The TEM has very poor lenses

 Spherical aberration in particular

This aberration causes diffracted waves to be 'phase shifted' by the objective lens

- Complex dependence on wavelength, $C_{s,}$ diffraction vector and defocus
- Magnitude of shift varies with distance from optic axis
 - And thus diffraction angle
 - Thus each diffracted wave undergoes a different phase shift

Complicates image interpretation

Not even this "simple"

The TEM has very poor lenses

 Spherical aberration in particular

This aberration causes diffracted waves to be 'phase shifted' by the objective lens

- Complex dependence on wavelength, $C_{s,}$ diffraction vector and defocus
- Magnitude of shift varies with distance from optic axis
 - And thus diffraction angle
 - Thus each diffracted wave undergoes a different phase shift

Complicates image interpretation

Not even this "simple"

The TEM has very poor lenses

 Spherical aberration in particular

This aberration causes diffracted waves to be 'phase shifted' by the objective lens

- Complex dependence on wavelength, $C_{s,}$ diffraction vector and defocus
- Magnitude of shift varies with distance from optic axis
 - And thus diffraction angle
 - Thus each diffracted wave undergoes a different phase shift

Complicates image interpretation

Incident electron wave	
Sample	
(very thin!)	
Transmitted & Diffracted waves	

- So, appears "simple" enough ...
- (1) Calculate the phase differences for the different diffracted waves
- (2) Create an interference pattern from the overlap of these phases in two-dimensions

Thus, the image you get STRONGLY DEPENDS ON THE FOCUS CONDITION

A single HREM image

Image courtesy C. Kisielowski, NCEM, LBNL

The 'unscrambled' exit wave

Simulation: Si

0.18 nm