Diffraction contrast imaging

Lecture 12 Part 2

Review: Planar faults Strain fields - generally Dislocations Coherent precipitates

Strain fields

As with planar faults, strain fields also introduce changes in the location of atoms within the crystal

In other words, any strain field introduces an $\vec{R}(\vec{r}_n')$, where:

With planar faults, the shift between one lattice and the next is single valued What happens if the strain field is continuous?

Calculating dislocation contrast

We use the "column approximation"

This is where we said we'd ignore variations in dz with changes in z

Modification of H-W Eqns

Possible to re-write the H-W Eqns in a different form, which incorporates a continuous $\vec{R}(\vec{r}_n')$

- Use a different substitution of variables than in previous derivation (planar case)
- Yields:

Dislocations

Screw dislocation

- **b**́∥**ū**́
- Can slip along any plane
- Again, we image the strain field

Mixed dislocation

- \vec{b} neither perpendicular nor parallel to \vec{u}
- Thus, each mixed dislocation can be resolved into edge components and screw components

Calculating dislocation contrast

- So, divide the sample into narrow columns
- Calculate the amplitude of ϕ_o and ϕ_g for each column What is R?
 - Need to go to elasticity theory
 - Find:

$$\vec{R} = \frac{1}{2\pi} \left\{ \begin{matrix} r \\ b\phi \\ + \frac{1}{4(1-\nu)} \end{matrix} \right] \begin{bmatrix} r \\ b_e \\ + b \\ \times u \\ (2(1-2\nu))nr + \cos 2\phi \\) \end{bmatrix} \right\}$$

 Or if doing computationally, use anisotropic elasticity theory, or simulation output

Modification of H-W Eqns

Possible to re-write the H-W Eqns in a different form, which incorporates a continuous $\vec{R}(\vec{r}_n')$

- Use a different substitution of variables than in previous derivation (planar case)
- Yields:

Dislocations interactions & tangles

HVEM Image of slip along an inclined plane

A complex dislocation tangle

Cold rolled alloy

Calculating dislocation contrast

- So, divide the sample into narrow columns
- Calculate the amplitude of ϕ_o and ϕ_g for each column What is R?
 - Need to go to elasticity theory
 - Find:

$$\vec{R} = \frac{1}{2\pi} \left\{ \begin{matrix} r \\ b\phi \\ + \frac{1}{4(1-\nu)} \end{matrix} \right] \begin{bmatrix} r \\ b_e \\ + b \\ \times u \\ (2(1-2\nu))nr + \cos 2\phi \\) \end{bmatrix} \right\}$$

 Or if doing computationally, use anisotropic elasticity theory, or simulation output

Consider a pure screw dislocation:

$$\vec{b}_{e} = 0 ; \vec{b} \times \vec{u} = 0$$

$$r = r + \frac{r}{2\pi} + \frac{r}{2\pi} + \frac{r}{2\pi} tan\left(\frac{z - z_{d}}{x}\right)$$

Table 25.1. Different Burgers Vectors and Different Reflections Give Different $g \cdot b = n$ Values^a

g b	$\frac{1}{6}$ [11 $\overline{2}$]	$\frac{1}{6}[1\bar{2}1]$	$\frac{1}{6}[\bar{2}11]$	$\frac{1}{3}$ [111]
$ \begin{array}{c} \pm (1\bar{1}1) \\ \pm (1\bar{1}1) \\ \pm (0\bar{2}2) \\ \pm (200) \\ \pm (3\bar{1}1) \\ \pm (3\bar{1}1) \end{array} $	$\pm 1/3$ $\pm 2/3$ ± 1 $\pm 1/3$ 0 ± 1	$\pm 2/3$ $\pm 1/3$ ± 1 $\pm 1/3$ $\pm 1/3$ ± 1 0	$\pm 1/3$ $\pm 1/3$ 0 $\pm 2/3$ ± 1 ± 1	$\pm 1/3$ $\pm 1/3$ 0 $\pm 2/3$ ± 1 ± 1

^{*a*}The dislocations all lie on a (111) plane in an fcc material; the beam direction is [011].

Thus: $\vec{g} \cdot \dot{\vec{R}} \propto \dot{\vec{g}} \cdot \dot{\vec{b}}$ "g dot b" contrast

So: R ∞ **b**

Modification of H-W Eqns

Possible to re-write the H-W Eqns in a different form, which incorporates a continuous $\vec{R}(\vec{r}_n')$

- Use a different substitution of variables than in previous derivation (planar case)
- Yields:

Consider a pure screw dislocation:

$$\vec{b}_{e} = 0 ; \vec{b} \times \vec{u} = 0$$

$$r = r + \frac{r}{2\pi} + \frac{r}{2\pi} + \frac{r}{2\pi} tan\left(\frac{z - z_{d}}{x}\right)$$

Table 25.1. Different Burgers Vectors and Different Reflections Give Different $g \cdot b = n$ Values^a

g b	$\frac{1}{6}$ [11 $\overline{2}$]	$\frac{1}{6}[1\bar{2}1]$	$\frac{1}{6}[\bar{2}11]$	$\frac{1}{3}$ [111]
$ \begin{array}{c} \pm (1\bar{1}1) \\ \pm (1\bar{1}1) \\ \pm (0\bar{2}2) \\ \pm (200) \\ \pm (3\bar{1}1) \\ \pm (3\bar{1}1) \end{array} $	$\pm 1/3$ $\pm 2/3$ ± 1 $\pm 1/3$ 0 ± 1	$\pm 2/3$ $\pm 1/3$ ± 1 $\pm 1/3$ $\pm 1/3$ ± 1 0	$\pm 1/3$ $\pm 1/3$ 0 $\pm 2/3$ ± 1 ± 1	$\pm 1/3$ $\pm 1/3$ 0 $\pm 2/3$ ± 1 ± 1

^{*a*}The dislocations all lie on a (111) plane in an fcc material; the beam direction is [011].

Thus: $\vec{g} \cdot \dot{\vec{R}} \propto \dot{\vec{g}} \cdot \dot{\vec{b}}$ "g dot b" contrast

So: R ∞ **b**

Now for pure edge

 $\vec{b} = \dot{b}_{e}$; $\dot{b}_{e} \times \dot{u} \neq 0$ So R has both a $\vec{g} \cdot \dot{b}$ & a $\vec{g} \cdot \dot{b} \times \dot{u}$ term

More on 'g dot b' contrast

Often said that when $\vec{g} \cdot \vec{b} = 0$ the dislocation is 'invisible'

This is because the lattice distortion is on diffracting planes parallel to R

- You won't see it's effect

More to it (unfortunately) Firstly, what is 'invisible'? Generally if $\vec{g} \cdot \vec{b} < \frac{1}{3}$ the contrast is faint More importantly, even if $\vec{g} \cdot \vec{b} = 0$ can have $\vec{g} \cdot \vec{b} \times \vec{u} \neq 0$

So, really need to find conditions where both $\vec{g} \cdot \vec{b} = 0$ & $\vec{g} \cdot \vec{b} \times \vec{u} = 0$ if possible

May have to settle for $\vec{g} \cdot \vec{b} = 0$ & $\vec{g} \cdot \vec{b} \times \vec{u} \le 0.64$

Interface misfit dislocations are a common class of defects to image

Be aware of surface relaxation effects (i.e $\vec{g} \cdot \mathbf{b} \times \mathbf{u} \neq 0$)

Consider a pure screw dislocation:

$$\vec{b}_{e} = 0 ; \vec{b} \times \vec{u} = 0$$

$$r = r + \frac{r}{2\pi} + \frac{r}{2\pi} + \frac{r}{2\pi} tan\left(\frac{z - z_{d}}{x}\right)$$

Table 25.1. Different Burgers Vectors and Different Reflections Give Different $g \cdot b = n$ Values^a

g b	$\frac{1}{6}$ [11 $\overline{2}$]	$\frac{1}{6}[1\bar{2}1]$	$\frac{1}{6}[\bar{2}11]$	$\frac{1}{3}$ [111]
$ \begin{array}{c} \pm (1\bar{1}1) \\ \pm (1\bar{1}1) \\ \pm (0\bar{2}2) \\ \pm (200) \\ \pm (3\bar{1}1) \\ \pm (3\bar{1}1) \end{array} $	$\pm 1/3$ $\pm 2/3$ ± 1 $\pm 1/3$ 0 ± 1	$\pm 2/3$ $\pm 1/3$ ± 1 $\pm 1/3$ $\pm 1/3$ ± 1 0	$\pm 1/3$ $\pm 1/3$ 0 $\pm 2/3$ ± 1 ± 1	$\pm 1/3$ $\pm 1/3$ 0 $\pm 2/3$ ± 1 ± 1

^{*a*}The dislocations all lie on a (111) plane in an fcc material; the beam direction is [011].

Thus: $\vec{g} \cdot \dot{\vec{R}} \propto \dot{\vec{g}} \cdot \dot{\vec{b}}$ "g dot b" contrast

So: R ∞ **b**

More to it (unfortunately) Firstly, what is 'invisible'? Generally if $\bar{g} \cdot \bar{b} < \frac{1}{3}$ the contrast is faint More importantly, even if

- $\vec{g} \cdot \dot{b} = 0$ can have $\vec{g} \cdot \dot{b} \times \dot{u} \neq 0$
- So, really need to find conditions where both $\vec{g} \cdot \vec{b} = 0$ & $\vec{g} \cdot \vec{b} \times \vec{u} = 0$ if possible

May have to settle for $\vec{g} \cdot \vec{b} = 0$ & $\vec{g} \cdot \vec{b} \times \vec{u} \le 0.64$

Consider a pure screw dislocation:

$$\vec{b}_{e} = 0 ; \vec{b} \times \vec{u} = 0$$

$$r = r + \frac{r}{2\pi} + \frac{r}{2\pi} + \frac{r}{2\pi} tan\left(\frac{z - z_{d}}{x}\right)$$

Table 25.1. Different Burgers Vectors and Different Reflections Give Different $g \cdot b = n$ Values^a

g b	$\frac{1}{6}$ [11 $\overline{2}$]	$\frac{1}{6}[1\bar{2}1]$	$\frac{1}{6}[\bar{2}11]$	$\frac{1}{3}$ [111]
$ \begin{array}{c} \pm (1\bar{1}1) \\ \pm (1\bar{1}1) \\ \pm (0\bar{2}2) \\ \pm (200) \\ \pm (3\bar{1}1) \\ \pm (3\bar{1}1) \end{array} $	$\pm 1/3$ $\pm 2/3$ ± 1 $\pm 1/3$ 0 ± 1	$\pm 2/3$ $\pm 1/3$ ± 1 $\pm 1/3$ $\pm 1/3$ ± 1 0	$\pm 1/3$ $\pm 1/3$ 0 $\pm 2/3$ ± 1 ± 1	$\pm 1/3$ $\pm 1/3$ 0 $\pm 2/3$ ± 1 ± 1

^{*a*}The dislocations all lie on a (111) plane in an fcc material; the beam direction is [011].

Thus: $\vec{g} \cdot \dot{\vec{R}} \propto \dot{\vec{g}} \cdot \dot{\vec{b}}$ "g dot b" contrast

So: R ∞ **b**

Table A 2. List of $|\mathbf{g} \cdot \mathbf{b}|$, $|\mathbf{g} \cdot \mathbf{b} \times \mathbf{u}|$ and *m* for each of the slip systems for the four diffraction conditions shown in Table A 1.

 $m = \frac{1}{2} |\mathbf{g} \cdot \mathbf{b} \times \mathbf{u}|$

0.18

0.18 0.22 0.13

0.18

0.18 0.22 0.13

0.18 0.18 0.13 0.22 0.18 0.18 0.13 0.22

0.18 0.18 0.05 🗲 0.05 🗲

0.18 0.18 0.13 0.13

0.18

0.18

0.13 0.13

0.18 0.18

0.05

0.05

An ov	amnlo: In	terfacial n	niefit		g	g∙b	$ \mathbf{g} \cdot \mathbf{b} imes \mathbf{u} $
			113111				b , $(a/2)[0\bar{1}1];$ u , $[\bar{1}10]$
nleih	cations in	SiGe			400	0	$\sqrt{2}$ $\sqrt{2}$
					040 311	2 0	$\sqrt{2} 5/2\sqrt{2}$
					131	1	$3/2\sqrt{2}$ $3/2\sqrt{2}$
Ford	ataile ea	e Stach, et	al Dhil M	ne	101		
	elans, sei	e olacii, el	. ai, i iii ivi	ay	400		$b,(a/2)[\overline{1}01]; u,[\overline{1}10]$
80, 20	200				400 040	2	$\sqrt{2}$ $\sqrt{2}$
<u>ou,</u> 20	JUU.				311	1	$5/2\sqrt{2}$
					131	1	$3/2\sqrt{2}$
					151		$b,(a/2)[011]; u,[\bar{1}10]$
							B,(a/2)[011], u,[110]
					400	0	$\sqrt{2}$
					040	2	$\sqrt{2}$
					311	1	$3/2\sqrt{2}$
					13Ī	1	$5/2\sqrt{2}$
						l	b,(a/2)[101]; u,[Ī10]
					400	2	$\sqrt{2}$
					040	0	$\sqrt{2}$
					311	2	3/2√2
					131	0	$5/2\sqrt{2}$
						I	b ,(<i>a</i> /2)[011]; u ,[110]
					400	0	$\sqrt{2}$
					040	2	$\sqrt{2}$
					311	0	$1/2\sqrt{2}$
					131	1	$1/2\sqrt{2}$
							b,(a/2)[101]; u,[110]
					400	2	$\sqrt{2}$
					040	0	$\sqrt{2}$
					311	1	3/2√2
Table A 1.	Diffraction condition	ons for which $\mathbf{g} \cdot \mathbf{b} = 0$ is	is true for at least one	Burgers vector.	131	1	3/2√2
		-		-			b,(a/2)[011]; u,[110]
	<i>a.</i>	<i>a</i>	<i>a</i>	<i>a</i>	400	0	$\sqrt{2}$
g	$b = \frac{a}{2}[0\bar{1}1]$	$b = \frac{a}{2}[\bar{1}01]$	$b = \frac{a}{2}[011]$	$b = \frac{a}{2}[101]$	040 311	2	$3/2\sqrt{2}$
	2	2	2	2	131	1	$3/2\sqrt{2}$ $3/2\sqrt{2}$
400	0	2	0	2	151	-	
040	2	0	2	0	400	2	b , $(a/2)[101]$; u , $[110]$ $\sqrt{2}$
311	0	1	1	2	040	0	$\sqrt{2}$
131	2	1	1	0	311	2	1/2√2
151	2	1	1	0	131	0	$1/2\sqrt{2}$

Table A 2. List of $|\mathbf{g} \cdot \mathbf{b}|$, $|\mathbf{g} \cdot \mathbf{b} \times \mathbf{u}|$ and *m* for each of the slip systems for the four diffraction conditions shown in Table A 1.

 $m = \frac{1}{2} |\mathbf{g} \cdot \mathbf{b} \times \mathbf{u}|$

0.18

0.18 0.22 0.13

0.18

0.18 0.22 0.13

0.18 0.18 0.13 0.22 0.18 0.18 0.13 0.22

0.18 0.18 0.05 🗲 0.05 🗲

0.18 0.18 0.13 0.13

0.18

0.18

0.13 0.13

0.18 0.18

0.05

0.05

An ov	amnlo: In	terfacial n	niefit		g	g∙b	$ \mathbf{g} \cdot \mathbf{b} imes \mathbf{u} $
			113111				b , $(a/2)[0\bar{1}1];$ u , $[\bar{1}10]$
nleih	cations in	SiGe			400	0	$\sqrt{2}$ $\sqrt{2}$
					040 311	2 0	$\sqrt{2} 5/2\sqrt{2}$
					131	1	$3/2\sqrt{2}$ $3/2\sqrt{2}$
Ford	ataile ea	e Stach, et	al Dhil M	ne	101		
	elans, sei	e olacii, el	. ai, i iii ivi	ay	400		$b,(a/2)[\overline{1}01]; u,[\overline{1}10]$
80, 20	200				400 040	2	$\sqrt{2}$ $\sqrt{2}$
<u>ou,</u> 20	JUU.				311	1	$5/2\sqrt{2}$
					131	1	$3/2\sqrt{2}$
					151		$b,(a/2)[011]; u,[\bar{1}10]$
							B,(a/2)[011], u,[110]
					400	0	$\sqrt{2}$
					040	2	$\sqrt{2}$
					311	1	$3/2\sqrt{2}$
					13Ī	1	$5/2\sqrt{2}$
						l	b,(a/2)[101]; u,[Ī10]
					400	2	$\sqrt{2}$
					040	0	$\sqrt{2}$
					311	2	3/2√2
					131	0	$5/2\sqrt{2}$
						I	b ,(<i>a</i> /2)[011]; u ,[110]
					400	0	$\sqrt{2}$
					040	2	$\sqrt{2}$
					311	0	$1/2\sqrt{2}$
					131	1	$1/2\sqrt{2}$
							b,(a/2)[101]; u,[110]
					400	2	$\sqrt{2}$
					040	0	$\sqrt{2}$
					311	1	3/2√2
Table A 1.	Diffraction condition	ons for which $\mathbf{g} \cdot \mathbf{b} = 0$ is	is true for at least one	Burgers vector.	131	1	3/2√2
		-		-			b,(a/2)[011]; u,[110]
	<i>a.</i>	<i>a</i>	<i>a</i>	<i>a</i>	400	0	$\sqrt{2}$
g	$b = \frac{a}{2}[0\bar{1}1]$	$b = \frac{a}{2}[\bar{1}01]$	$b = \frac{a}{2}[011]$	$b = \frac{a}{2}[101]$	040 311	2	$3/2\sqrt{2}$
	2	2	2	2	131	1	$3/2\sqrt{2}$ $3/2\sqrt{2}$
400	0	2	0	2	151	-	
040	2	0	2	0	400	2	b , $(a/2)[101]$; u , $[110]$ $\sqrt{2}$
311	0	1	1	2	040	0	$\sqrt{2}$
131	2	1	1	0	311	2	1/2√2
151	2	1	1	0	131	0	$1/2\sqrt{2}$

Consider a pure screw dislocation:

$$\vec{b}_{e} = 0 ; \vec{b} \times \vec{u} = 0$$

$$r = r + \frac{r}{2\pi} + \frac{r}{2\pi} + \frac{r}{2\pi} tan\left(\frac{z - z_{d}}{x}\right)$$

Table 25.1. Different Burgers Vectors and Different Reflections Give Different $g \cdot b = n$ Values^a

g b	$\frac{1}{6}$ [11 $\overline{2}$]	$\frac{1}{6}[1\bar{2}1]$	$\frac{1}{6}[\bar{2}11]$	$\frac{1}{3}$ [111]
$ \begin{array}{c} \pm (1\bar{1}1) \\ \pm (1\bar{1}1) \\ \pm (0\bar{2}2) \\ \pm (200) \\ \pm (3\bar{1}1) \\ \pm (3\bar{1}1) \end{array} $	$\pm 1/3$ $\pm 2/3$ ± 1 $\pm 1/3$ 0 ± 1	$\pm 2/3$ $\pm 1/3$ ± 1 $\pm 1/3$ $\pm 1/3$ ± 1 0	$\pm 1/3$ $\pm 1/3$ 0 $\pm 2/3$ ± 1 ± 1	$\pm 1/3$ $\pm 1/3$ 0 $\pm 2/3$ ± 1 ± 1

^{*a*}The dislocations all lie on a (111) plane in an fcc material; the beam direction is [011].

Thus: $\vec{g} \cdot \dot{\vec{R}} \propto \dot{\vec{g}} \cdot \dot{\vec{b}}$ "g dot b" contrast

So: R ∞ **b**

Table A 2. List of $|\mathbf{g} \cdot \mathbf{b}|$, $|\mathbf{g} \cdot \mathbf{b} \times \mathbf{u}|$ and *m* for each of the slip systems for the four diffraction conditions shown in Table A 1.

 $m = \frac{1}{2} |\mathbf{g} \cdot \mathbf{b} \times \mathbf{u}|$

0.18

0.18 0.22 0.13

0.18

0.18 0.22 0.13

0.18 0.18 0.13 0.22 0.18 0.18 0.13 0.22

0.18 0.18 0.05 🗲 0.05 🗲

0.18 0.18 0.13 0.13

0.18

0.18

0.13 0.13

0.18 0.18

0.05

0.05

An ov	amnlo: In	terfacial n	niefit		g	g∙b	$ \mathbf{g} \cdot \mathbf{b} imes \mathbf{u} $
			113111				b , $(a/2)[0\bar{1}1];$ u , $[\bar{1}10]$
nleih	cations in	SiGe			400	0	$\sqrt{2}$ $\sqrt{2}$
					040 311	2 0	$\sqrt{2} 5/2\sqrt{2}$
					131	1	$3/2\sqrt{2}$ $3/2\sqrt{2}$
Ford	ataile ea	e Stach, et	al Dhil M	ne	101		
	elans, sei	e olacii, el	. ai, i iii ivi	ay	400		$b,(a/2)[\overline{1}01]; u,[\overline{1}10]$
80, 20	200				400 040	2	$\sqrt{2}$ $\sqrt{2}$
<u>ou,</u> 20	JUU.				311	1	$5/2\sqrt{2}$
					131	1	$3/2\sqrt{2}$
					151		$b,(a/2)[011]; u,[\bar{1}10]$
							B,(a/2)[011], u,[110]
					400	0	$\sqrt{2}$
					040	2	$\sqrt{2}$
					311	1	$3/2\sqrt{2}$
					13Ī	1	$5/2\sqrt{2}$
						I	b,(a/2)[101]; u,[Ī10]
					400	2	$\sqrt{2}$
					040	0	$\sqrt{2}$
					311	2	3/2√2
					131	0	$5/2\sqrt{2}$
						I	b ,(<i>a</i> /2)[011]; u ,[110]
					400	0	$\sqrt{2}$
					040	2	$\sqrt{2}$
					311	0	$1/2\sqrt{2}$
					131	1	$1/2\sqrt{2}$
							b,(a/2)[101]; u,[110]
					400	2	$\sqrt{2}$
					040	0	$\sqrt{2}$
					311	1	3/2√2
Table A 1.	Diffraction condition	ons for which $\mathbf{g} \cdot \mathbf{b} = 0$ is	is true for at least one	Burgers vector.	131	1	3/2√2
		-		-			b,(a/2)[011]; u,[110]
	<i>a.</i>	<i>a</i>	<i>a</i>	<i>a</i>	400	0	$\sqrt{2}$
g	$b = \frac{a}{2}[0\bar{1}1]$	$b = \frac{a}{2}[\bar{1}01]$	$b = \frac{a}{2}[011]$	$b = \frac{a}{2}[101]$	040 311	2	$3/2\sqrt{2}$
	2	2	2	2	131	1	$3/2\sqrt{2}$ $3/2\sqrt{2}$
400	0	2	0	2	151	-	
040	2	0	2	0	400	2	b , $(a/2)[101]$; u , $[110]$ $\sqrt{2}$
311	0	1	1	2	040	0	$\sqrt{2}$
131	2	1	1	0	311	2	1/2√2
151	2	1	1	0	131	0	$1/2\sqrt{2}$

Consider a pure screw dislocation:

$$\vec{b}_{e} = 0 ; \vec{b} \times \vec{u} = 0$$

$$r = r + \frac{r}{2\pi} + \frac{r}{2\pi} + \frac{r}{2\pi} tan\left(\frac{z - z_{d}}{x}\right)$$

Table 25.1. Different Burgers Vectors and Different Reflections Give Different $g \cdot b = n$ Values^a

g b	$\frac{1}{6}$ [11 $\overline{2}$]	$\frac{1}{6}[1\bar{2}1]$	$\frac{1}{6}[\bar{2}11]$	$\frac{1}{3}$ [111]
$ \begin{array}{c} \pm (1\bar{1}1) \\ \pm (1\bar{1}1) \\ \pm (0\bar{2}2) \\ \pm (200) \\ \pm (3\bar{1}1) \\ \pm (3\bar{1}1) \end{array} $	$\pm 1/3$ $\pm 2/3$ ± 1 $\pm 1/3$ 0 ± 1	$\pm 2/3$ $\pm 1/3$ ± 1 $\pm 1/3$ $\pm 1/3$ ± 1 0	$\pm 1/3$ $\pm 1/3$ 0 $\pm 2/3$ ± 1 ± 1	$\pm 1/3$ $\pm 1/3$ 0 $\pm 2/3$ ± 1 ± 1

^{*a*}The dislocations all lie on a (111) plane in an fcc material; the beam direction is [011].

Thus: $\vec{g} \cdot \dot{\vec{R}} \propto \dot{\vec{g}} \cdot \dot{\vec{b}}$ "g dot b" contrast

So: R ∞ **b**

Dislocation loops & dipoles

Often dislocation loops formed by collapse of interstitials or vacancies

Can thus enclose intrinsic or extrinsic stacking faults, or may be no fault

Dislocations loops & dipoles

Prismatic dislocation loops can nicely demonstrate $\vec{g} \cdot \vec{b} = 0$ & $\vec{g} \cdot \vec{b} \times \vec{u} = 0$ effects

Dislocations loops & dipoles

- Dislocation dipoles are essentially elongated loops
- Have no net Burgers vector, and thus no long range stress field
- Exhibit same 'inside / outside' contrast on reverse of s
 - Remember contrast origin tied to $(\vec{g} \cdot \vec{b})$ s

Dislocations interactions & tangles

HVEM Image of slip along an inclined plane

A complex dislocation tangle

Cold rolled alloy

- For a screw dislocation, only worry about $\vec{g} \cdot \vec{b} = 0$
- However, even if $\vec{g} \cdot \vec{b} = 0$ can see effects of surface relaxation

Oxides on TEM samples (an artifact) can pin dislocations

Interface misfit dislocations are a common class of defects to image

Be aware of surface relaxation effects (i.e $\vec{g} \cdot \vec{b} \times \vec{u} \neq 0$)

Coherent precipitates & islands

Strain field from coherent precipitates also give "g dot b contrast"

A line of zero contrast is observed perpendicular to g

