Diffraction contrast imaging

Lecture 12 Part 2

Review: Planar faults
Strain fields - generally
Dislocations
Coherent precipitates

Strain fields

As with planar faults, strain fields also introduce changes in the location of atoms within the crystal
In other words, any strain field introduces an $\vec{R}\left(\vec{r}_{n}^{\prime}\right)$, where:

With planar faults, the shift between one lattice and the next is single valued
What happens if the strain field is continuous?

Calculating dislocation contrast

We use the "column approximation"
This is where we said we'd ignore variations in dz with changes in z

Incident Beam

Electron Beam

Incident Beam

Modification of H-W Eqns

Possible to re-write the H-W Eqns in a different form, which incorporates a continuous $\overrightarrow{\mathbf{R}}\left(\vec{r}_{n}^{\prime}\right)$
Use a different substitution of variables than in previous derivation (planar case)
Yields:

$$
\begin{aligned}
& \frac{d \phi_{o}}{d z}=\frac{\pi i}{\xi_{0}} \phi_{g} \\
& \text { and } \\
& \frac{\mathrm{d} \phi_{\mathrm{g}}}{\mathrm{dz}}=\frac{\pi i}{\xi_{\mathrm{g}}} \phi_{\mathrm{o}}+\left[2 \pi i\left(\overrightarrow{\left.\mathrm{sz}+\mathbf{g} \cdot \frac{\mathrm{r} \mathrm{R}}{\mathrm{dz}}\right)}\right) \phi_{\mathrm{g}}=\frac{\pi i}{\xi_{\mathrm{g}}} \phi_{\mathrm{o}}+2 \pi \mathrm{i}_{\mathrm{R}} \phi_{\mathrm{g}}\right.
\end{aligned}
$$

Dislocations

Screw dislocation

- $\overrightarrow{\mathbf{b}} \| \overrightarrow{\mathbf{u}}$
- Can slip along any plane
- Again, we image the strain field

Mixed dislocation

- \vec{b} neither perpendicular nor parallel to $\overrightarrow{\mathbf{u}}$
- Thus, each mixed dislocation can be resolved into edge components and screw components

Calculating dislocation contrast

So, divide the sample into narrow columns

Calculate the amplitude of ϕ_{o} and ϕ_{g} for each column What is R ?

- Need to go to elasticity theory
- Find:

$\overrightarrow{\mathbf{R}}=\frac{1}{2 \pi}\left\{\underset{b}{r}+\frac{1}{4(1-v)}\left[\begin{array}{l}r \\ \mathbf{b} \\ \mathbf{b}\end{array}+\underset{b}{r} \times \underset{u}{r}(2(1-2 v) n r+\cos 2 \phi)\right]\right\}$
- Or if doing computationally, use anisotropic elasticity theory, or simulation output

Modification of H-W Eqns

Possible to re-write the H-W Eqns in a different form, which incorporates a continuous $\overrightarrow{\mathbf{R}}\left(\vec{r}_{n}^{\prime}\right)$
Use a different substitution of variables than in previous derivation (planar case)
Yields:

$$
\begin{aligned}
& \frac{d \phi_{\mathrm{o}}}{\mathrm{dz}}=\frac{\pi i}{\xi_{\mathrm{o}}} \phi_{\mathrm{g}} \\
& \text { and } \\
& \frac{\mathrm{d} \phi_{\mathrm{g}}}{\mathrm{dz}}=\frac{\pi i}{\xi_{\mathrm{g}}} \phi_{\mathrm{o}}+\left[2 \pi i\left(\overrightarrow{\left.\mathrm{sz}+\mathbf{g} \cdot \frac{\mathrm{r} \mathrm{R}}{\mathrm{dz}}\right)}\right) \phi_{\mathrm{g}}=\frac{\pi i}{\xi_{\mathrm{g}}} \phi_{\mathrm{o}}+2 \pi \mathrm{i}_{\mathrm{R}} \phi_{\mathrm{g}}\right.
\end{aligned}
$$

Dislocations interactions \& tangles

HVEM Image of slip along an inclined plane

Cold rolled alloy

A complex dislocation tangle

Calculating dislocation contrast

So, divide the sample into narrow columns

Calculate the amplitude of ϕ_{o} and ϕ_{g} for each column What is R ?

- Need to go to elasticity theory
- Find:

$\overrightarrow{\mathbf{R}}=\frac{1}{2 \pi}\left\{\underset{b}{r}+\frac{1}{4(1-v)}\left[\begin{array}{l}r \\ \mathbf{b} \\ \mathbf{b}\end{array}+\underset{b}{r} \times \underset{u}{r}(2(1-2 v) n r+\cos 2 \phi)\right]\right\}$
- Or if doing computationally, use anisotropic elasticity theory, or simulation output

Dislocation contrast

Consider a pure screw dislocation:

$\vec{b}_{e}=0 ; \dot{b} \times \dot{u}=0$
$\stackrel{r}{R}=\stackrel{r}{b} \frac{\phi}{2 \pi}=\frac{\stackrel{r}{b}}{2 \pi} \tan \left(\frac{z-z_{d}}{x}\right)$
So: $\overrightarrow{\mathbf{R}} \propto \dot{\mathbf{b}}$
Thus: $\overrightarrow{\mathbf{g}} \cdot \dot{\mathbf{R}} \propto \mathbf{g} \cdot \dot{\mathbf{b}}$
"g dot b" contrast

Table 25.1. Different Burgers Vectors and Different
Reflections Give Different g•b=n Values ${ }^{a}$

\mathbf{g}	$\frac{1}{6}[11 \overline{2}]$	$\frac{1}{6}[1 \overline{2} 1]$	$\frac{1}{6}[\overline{2} 11]$	$\frac{1}{3}[111]$
$\pm(1 \overline{1} 1)$	$\pm 1 / 3$	$\pm 2 / 3$	$\pm 1 / 3$	$\pm 1 / 3$
$\pm(\overline{1} 1)$	$\pm 2 / 3$	$\pm 1 / 3$	$\pm 1 / 3$	$\pm 1 / 3$
$\pm(0 \overline{2} 2)$	± 1	± 1	0	0
$\pm(200)$	$\pm 1 / 3$	$\pm 1 / 3$	$\pm 2 / 3$	$\pm 2 / 3$
$\pm(3 \overline{1} 1)$	0	± 1	± 1	± 1
$\pm(\overline{3} \overline{1} 1)$	± 1	0	± 1	± 1

${ }^{a}$ The dislocations all lie on a (111) plane in an fcc material; the beam direction is [011].

Modification of H-W Eqns

Possible to re-write the H-W Eqns in a different form, which incorporates a continuous $\overrightarrow{\mathbf{R}}\left(\vec{r}_{n}^{\prime}\right)$
Use a different substitution of variables than in previous derivation (planar case)
Yields:

$$
\begin{aligned}
& \frac{d \phi_{\mathrm{o}}}{\mathrm{dz}}=\frac{\pi i}{\xi_{\mathrm{o}}} \phi_{\mathrm{g}} \\
& \text { and } \\
& \frac{\mathrm{d} \phi_{\mathrm{g}}}{\mathrm{dz}}=\frac{\pi i}{\xi_{\mathrm{g}}} \phi_{\mathrm{o}}+\left[2 \pi i\left(\overrightarrow{\left.\mathrm{sz}+\mathbf{g} \cdot \frac{\mathrm{r} \mathrm{R}}{\mathrm{dz}}\right)}\right) \phi_{\mathrm{g}}=\frac{\pi i}{\xi_{\mathrm{g}}} \phi_{\mathrm{o}}+2 \pi \mathrm{i}_{\mathrm{R}} \phi_{\mathrm{g}}\right.
\end{aligned}
$$

Dislocation contrast

(a)

(b)

(c)

Dislocation contrast

Consider a pure screw dislocation:

$\vec{b}_{e}=0 ; \dot{b} \times \dot{u}=0$
$\stackrel{r}{R}=\stackrel{r}{b} \frac{\phi}{2 \pi}=\frac{\stackrel{r}{b}}{2 \pi} \tan \left(\frac{z-z_{d}}{x}\right)$
So: $\overrightarrow{\mathbf{R}} \propto \dot{\mathbf{b}}$
Thus: $\overrightarrow{\mathbf{g}} \cdot \dot{\mathbf{R}} \propto \mathbf{g} \cdot \dot{\mathbf{b}}$
"g dot b" contrast

Table 25.1. Different Burgers Vectors and Different
Reflections Give Different g•b=n Values ${ }^{a}$

\mathbf{g}	$\frac{1}{6}[11 \overline{2}]$	$\frac{1}{6}[1 \overline{2} 1]$	$\frac{1}{6}[\overline{2} 11]$	$\frac{1}{3}[111]$
$\pm(1 \overline{1} 1)$	$\pm 1 / 3$	$\pm 2 / 3$	$\pm 1 / 3$	$\pm 1 / 3$
$\pm(\overline{1} 1)$	$\pm 2 / 3$	$\pm 1 / 3$	$\pm 1 / 3$	$\pm 1 / 3$
$\pm(0 \overline{2} 2)$	± 1	± 1	0	0
$\pm(200)$	$\pm 1 / 3$	$\pm 1 / 3$	$\pm 2 / 3$	$\pm 2 / 3$
$\pm(3 \overline{1} 1)$	0	± 1	± 1	± 1
$\pm(\overline{3} \overline{1} 1)$	± 1	0	± 1	± 1

${ }^{a}$ The dislocations all lie on a (111) plane in an fcc material; the beam direction is [011].

Dislocation contrast

(a)

(b)

(c)

Dislocation contrast

Now for pure edge

$$
\overrightarrow{\mathbf{b}}=\dot{b}_{e} ; \dot{b}_{e} \times \dot{\mathbf{u}} \neq 0
$$

So R has both $a \mathbf{g} \cdot \dot{b} \& a$ $\overrightarrow{\mathbf{g}} \cdot \dot{\mathbf{b}} \times \mathbf{u}$ term

More on ' g dot b' contrast Often said that when $\overrightarrow{\mathrm{g}} \cdot \dot{\mathrm{b}}=\mathbf{0}$ the dislocation is 'invisible'

This is because the lattice distortion is on diffracting planes parallel to R

- You won't see it's effect

Dislocation contrast

More to it (unfortunately)

Firstly, what is 'invisible'?

Generally if $\vec{g} \cdot{ }^{\prime}$ b $<1 / 3$ the contrast is faint

More importantly, even if
$\overrightarrow{\mathbf{g}} \cdot \dot{\mathbf{b}}=0$ can have $\overrightarrow{\mathbf{g}} \cdot \dot{\mathbf{b}} \times \dot{\mathbf{u}} \neq 0$
So, really need to find conditions where both

$\overrightarrow{\mathbf{g}} \cdot \dot{\mathbf{b}}=0$ \& $\dot{\mathbf{g}} \cdot \dot{\mathbf{b}} \times \dot{\mathbf{u}}=\mathbf{0}$ if
possible
May have to settle for
$\overrightarrow{\mathbf{g}} \cdot \dot{\mathbf{b}}=0 \& \dot{\mathrm{~g}} \cdot \dot{\mathbf{b}} \times \dot{\mathbf{u}} \leq 0.64$

Surface effects \& interfaces

311 two beam condition Images are axial dark field
$\mathrm{s} \gg 0$
$\mathrm{s}>0$

$131 \overline{1}$ two beam condition Images are axial dark field

$$
\mathrm{s} \gg 0
$$

$$
s>0
$$

$$
\mathbf{s}=0
$$

$\mathrm{s}<0$
$\mathrm{s} \ll 0$

Surface effects \& interfaces

Interface misfit dislocations are a common class of defects to image Be aware of surface relaxation effects (i.e $\overrightarrow{\mathbf{g}} \cdot \vec{b} \times \mathbf{u} \neq 0$)

$\nabla_{10,1}$

Surface effects \& interfaces

400 two beam condition Images are axial dark field $\mathrm{s} \gg 0$
$s>0$
$\mathrm{s}=0$
$\mathrm{s}<0$
$\mathrm{s} \ll 0$

040 two beam condition Images are axial dark field

$$
\mathrm{s}=0
$$

$$
\mathrm{s}<0
$$

$$
\mathrm{s} \ll 0
$$

Surface effects \& interfaces

311 two beam condition Images are axial dark field
$\mathrm{s} \gg 0$
$\mathrm{s}>0$

$131 \overline{1}$ two beam condition Images are axial dark field

$$
\mathrm{s} \gg 0
$$

$$
s>0
$$

$$
\mathbf{s}=0
$$

$\mathrm{s}<0$
$\mathrm{s} \ll 0$

Dislocation contrast

Consider a pure screw dislocation:

$\vec{b}_{e}=0 ; \dot{b} \times \dot{u}=0$
$\stackrel{r}{R}=\stackrel{r}{b} \frac{\phi}{2 \pi}=\frac{\stackrel{r}{b}}{2 \pi} \tan \left(\frac{z-z_{d}}{x}\right)$
So: $\overrightarrow{\mathbf{R}} \propto \dot{\mathbf{b}}$
Thus: $\overrightarrow{\mathbf{g}} \cdot \dot{\mathbf{R}} \propto \mathbf{g} \cdot \dot{\mathbf{b}}$
"g dot b" contrast

Table 25.1. Different Burgers Vectors and Different
Reflections Give Different g•b=n Values ${ }^{a}$

\mathbf{g}	$\frac{1}{6}[11 \overline{2}]$	$\frac{1}{6}[1 \overline{2} 1]$	$\frac{1}{6}[\overline{2} 11]$	$\frac{1}{3}[111]$
$\pm(1 \overline{1} 1)$	$\pm 1 / 3$	$\pm 2 / 3$	$\pm 1 / 3$	$\pm 1 / 3$
$\pm(\overline{1} 1)$	$\pm 2 / 3$	$\pm 1 / 3$	$\pm 1 / 3$	$\pm 1 / 3$
$\pm(0 \overline{2} 2)$	± 1	± 1	0	0
$\pm(200)$	$\pm 1 / 3$	$\pm 1 / 3$	$\pm 2 / 3$	$\pm 2 / 3$
$\pm(3 \overline{1} 1)$	0	± 1	± 1	± 1
$\pm(\overline{3} \overline{1} 1)$	± 1	0	± 1	± 1

${ }^{a}$ The dislocations all lie on a (111) plane in an fcc material; the beam direction is [011].

Dislocation contrast

More to it (unfortunately)

Firstly, what is 'invisible'?

Generally if $\vec{g} \cdot{ }^{\prime}$ b $<1 / 3$ the contrast is faint

More importantly, even if
$\overrightarrow{\mathbf{g}} \cdot \dot{\mathbf{b}}=0$ can have $\overrightarrow{\mathbf{g}} \cdot \dot{\mathbf{b}} \times \dot{\mathbf{u}} \neq 0$
So, really need to find conditions where both

$\overrightarrow{\mathbf{g}} \cdot \dot{\mathbf{b}}=0$ \& $\dot{\mathbf{g}} \cdot \dot{\mathbf{b}} \times \dot{\mathbf{u}}=\mathbf{0}$ if
possible
May have to settle for
$\overrightarrow{\mathbf{g}} \cdot \dot{\mathbf{b}}=0 \& \dot{\mathrm{~g}} \cdot \dot{\mathbf{b}} \times \dot{\mathbf{u}} \leq 0.64$

Dislocation contrast

Consider a pure screw dislocation:

$\vec{b}_{e}=0 ; \dot{b} \times \dot{u}=0$
$\stackrel{r}{R}=\stackrel{r}{b} \frac{\phi}{2 \pi}=\frac{\stackrel{r}{b}}{2 \pi} \tan \left(\frac{z-z_{d}}{x}\right)$
So: $\overrightarrow{\mathbf{R}} \propto \dot{\mathbf{b}}$
Thus: $\overrightarrow{\mathbf{g}} \cdot \dot{\mathbf{R}} \propto \mathbf{g} \cdot \dot{\mathbf{b}}$
"g dot b" contrast

Table 25.1. Different Burgers Vectors and Different
Reflections Give Different g•b=n Values ${ }^{a}$

\mathbf{g}	$\frac{1}{6}[11 \overline{2}]$	$\frac{1}{6}[1 \overline{2} 1]$	$\frac{1}{6}[\overline{2} 11]$	$\frac{1}{3}[111]$
$\pm(1 \overline{1} 1)$	$\pm 1 / 3$	$\pm 2 / 3$	$\pm 1 / 3$	$\pm 1 / 3$
$\pm(\overline{1} 1)$	$\pm 2 / 3$	$\pm 1 / 3$	$\pm 1 / 3$	$\pm 1 / 3$
$\pm(0 \overline{2} 2)$	± 1	± 1	0	0
$\pm(200)$	$\pm 1 / 3$	$\pm 1 / 3$	$\pm 2 / 3$	$\pm 2 / 3$
$\pm(3 \overline{1} 1)$	0	± 1	± 1	± 1
$\pm(\overline{3} \overline{1} 1)$	± 1	0	± 1	± 1

${ }^{a}$ The dislocations all lie on a (111) plane in an fcc material; the beam direction is [011].

Surface effects \& interfaces

400 two beam condition Images are axial dark field $\mathrm{s} \gg 0$
$s>0$
$\mathrm{s}=0$
$\mathrm{s}<0$
$\mathrm{s} \ll 0$

040 two beam condition Images are axial dark field

$$
\mathrm{s}=0
$$

$$
\mathrm{s}<0
$$

$$
\mathrm{s} \ll 0
$$

Surface effects \& interfaces

311 two beam condition Images are axial dark field
$\mathrm{s} \gg 0$
$\mathrm{s}>0$

$131 \overline{1}$ two beam condition Images are axial dark field

$$
\mathrm{s} \gg 0
$$

$$
s>0
$$

$$
\mathbf{s}=0
$$

$\mathrm{s}<0$
$\mathrm{s} \ll 0$

Surface effects \& interfaces

An example: Interfacial misfit dislocations in SiGe

For details, see Stach, et al, Phil Mag 80, 2000.

Table A 1. Diff raction conditions for which $\mathbf{g} \cdot \mathbf{b}=0$ is true for at least one Burgers vector.

\mathbf{g}	$\mathbf{b}=\frac{a}{2}[0 \overline{1} 1]$	$\mathbf{b}=\frac{a}{2}[\overline{1} 01]$	$\mathbf{b}=\frac{a}{2}[011]$	$\mathrm{b}=\frac{a}{2}[101]$
400	0	2	0	2
040	2	0	2	0
311	0	1	1	2
$13 \overline{1}$	2	1	0	

g	$\|\mathrm{g} \cdot \mathrm{b}\|$	$\|\mathbf{g} \cdot \mathbf{b} \times \mathbf{u}\|$	$m=\frac{1}{8}\|\mathrm{~g} \cdot \mathbf{b} \times \mathbf{u}\|$
b, (a/2)[0ī1]; u,[ī 10$]$			
400	0	$\sqrt{2}$	0.18
040	2	$\sqrt{2}$	0.18
311	0	$5 / 2 \sqrt{2}$	0.22
131	1	$3 / 2 \sqrt{2}$	0.13
b, (a/2)[101]; u,[ī 10$]$			
400	2	$\sqrt{2}$	0.18
040	0	$\sqrt{2}$	0.18
311	1	$5 / 2 \sqrt{2}$	0.22
13 T	1	$3 / 2 \sqrt{2}$	0.13
b, (a/2)[011]; u,[1] 10$]$			
400	0	$\sqrt{2}$	0.18
040	2	$\sqrt{2}$	0.18
311	1	$3 / 2 \sqrt{2}$	0.13
13 T	1	$5 / 2 \sqrt{2}$	0.22
b, (a/2)[101]; u,[ī 10$]$			
400	2	$\sqrt{2}$	0.18
040	0	$\sqrt{2}$	0.18
311		$3 / 2 \sqrt{2}$	0.13
131	0	$5 / 2 \sqrt{2}$	0.22
b, (a/2)[0ī1]; u,[110]			
400	0	$\sqrt{2}$	0.18
040	2	$\sqrt{2}$	0.18
311	0	$1 / 2 \sqrt{2}$	0.05
13 T	1	$1 / 2 \sqrt{2}$	$0.05 \longleftarrow$
b, (a/2)[i01]; u,[110]			
400	2	$\sqrt{2}$	0.18
040	0	$\sqrt{2}$	0.18
311	1	$3 / 2 \sqrt{2}$	0.13
13 T	1	$3 / 2 \sqrt{2}$	0.13
b, (a/2)[011]; u,[110]			
400	0	$\sqrt{2}$	0.18
040	2	$\sqrt{2}$	0.18
311	1	$3 / 2 \sqrt{2}$	0.13
131	1	$3 / 2 \sqrt{2}$	0.13
b, (a/2)[101]; u,[110]			
400	2	$\sqrt{2}$	0.18
040	0	$\sqrt{2}$	0.18
311	2	$1 / 2 \sqrt{2}$	0.05
13 I	0	$1 / 2 \sqrt{2}$	0.05

Surface effects \& interfaces

400 two beam condition Images are axial dark field $\mathrm{s} \gg 0$
$s>0$
$\mathrm{s}=0$
$\mathrm{s}<0$
$\mathrm{s} \ll 0$

040 two beam condition Images are axial dark field

$$
\mathrm{s}=0
$$

$$
\mathrm{s}<0
$$

$$
\mathrm{s} \ll 0
$$

Surface effects \& interfaces

An example: Interfacial misfit dislocations in SiGe

For details, see Stach, et al, Phil Mag 80, 2000.

Table A 1. Diff raction conditions for which $\mathbf{g} \cdot \mathbf{b}=0$ is true for at least one Burgers vector.

\mathbf{g}	$\mathbf{b}=\frac{a}{2}[0 \overline{1} 1]$	$\mathbf{b}=\frac{a}{2}[\overline{1} 01]$	$\mathbf{b}=\frac{a}{2}[011]$	$\mathrm{b}=\frac{a}{2}[101]$
400	0	2	0	2
040	2	0	2	0
311	0	1	1	2
$13 \overline{1}$	2	1	0	

g	$\|\mathrm{g} \cdot \mathrm{b}\|$	$\|\mathbf{g} \cdot \mathbf{b} \times \mathbf{u}\|$	$m=\frac{1}{8}\|\mathrm{~g} \cdot \mathbf{b} \times \mathbf{u}\|$
b, (a/2)[0ī1]; u,[ī 10$]$			
400	0	$\sqrt{2}$	0.18
040	2	$\sqrt{2}$	0.18
311	0	$5 / 2 \sqrt{2}$	0.22
131	1	$3 / 2 \sqrt{2}$	0.13
b, (a/2)[101]; u,[ī 10$]$			
400	2	$\sqrt{2}$	0.18
040	0	$\sqrt{2}$	0.18
311	1	$5 / 2 \sqrt{2}$	0.22
13 T	1	$3 / 2 \sqrt{2}$	0.13
b, (a/2)[011]; u,[1] 10$]$			
400	0	$\sqrt{2}$	0.18
040	2	$\sqrt{2}$	0.18
311	1	$3 / 2 \sqrt{2}$	0.13
13 T	1	$5 / 2 \sqrt{2}$	0.22
b, (a/2)[101]; u,[ī 10$]$			
400	2	$\sqrt{2}$	0.18
040	0	$\sqrt{2}$	0.18
311		$3 / 2 \sqrt{2}$	0.13
131	0	$5 / 2 \sqrt{2}$	0.22
b, (a/2)[0ī1]; u,[110]			
400	0	$\sqrt{2}$	0.18
040	2	$\sqrt{2}$	0.18
311	0	$1 / 2 \sqrt{2}$	0.05
13 T	1	$1 / 2 \sqrt{2}$	$0.05 \longleftarrow$
b, (a/2)[i01]; u,[110]			
400	2	$\sqrt{2}$	0.18
040	0	$\sqrt{2}$	0.18
311	1	$3 / 2 \sqrt{2}$	0.13
13 T	1	$3 / 2 \sqrt{2}$	0.13
b, (a/2)[011]; u,[110]			
400	0	$\sqrt{2}$	0.18
040	2	$\sqrt{2}$	0.18
311	1	$3 / 2 \sqrt{2}$	0.13
131	1	$3 / 2 \sqrt{2}$	0.13
b, (a/2)[101]; u,[110]			
400	2	$\sqrt{2}$	0.18
040	0	$\sqrt{2}$	0.18
311	2	$1 / 2 \sqrt{2}$	0.05
13 I	0	$1 / 2 \sqrt{2}$	0.05

Dislocation contrast

Consider a pure screw dislocation:

$\vec{b}_{e}=0 ; \dot{b} \times \dot{u}=0$
$\stackrel{r}{R}=\stackrel{r}{b} \frac{\phi}{2 \pi}=\frac{\stackrel{r}{b}}{2 \pi} \tan \left(\frac{z-z_{d}}{x}\right)$
So: $\overrightarrow{\mathbf{R}} \propto \dot{\mathbf{b}}$
Thus: $\overrightarrow{\mathbf{g}} \cdot \dot{\mathbf{R}} \propto \mathbf{g} \cdot \dot{\mathbf{b}}$
"g dot b" contrast

Table 25.1. Different Burgers Vectors and Different
Reflections Give Different g•b=n Values ${ }^{a}$

\mathbf{g}	$\frac{1}{6}[11 \overline{2}]$	$\frac{1}{6}[1 \overline{2} 1]$	$\frac{1}{6}[\overline{2} 11]$	$\frac{1}{3}[111]$
$\pm(1 \overline{1} 1)$	$\pm 1 / 3$	$\pm 2 / 3$	$\pm 1 / 3$	$\pm 1 / 3$
$\pm(\overline{1} 1)$	$\pm 2 / 3$	$\pm 1 / 3$	$\pm 1 / 3$	$\pm 1 / 3$
$\pm(0 \overline{2} 2)$	± 1	± 1	0	0
$\pm(200)$	$\pm 1 / 3$	$\pm 1 / 3$	$\pm 2 / 3$	$\pm 2 / 3$
$\pm(3 \overline{1} 1)$	0	± 1	± 1	± 1
$\pm(\overline{3} \overline{1} 1)$	± 1	0	± 1	± 1

${ }^{a}$ The dislocations all lie on a (111) plane in an fcc material; the beam direction is [011].

Surface effects \& interfaces

An example: Interfacial misfit dislocations in SiGe

For details, see Stach, et al, Phil Mag 80, 2000.

Table A 1. Diff raction conditions for which $\mathbf{g} \cdot \mathbf{b}=0$ is true for at least one Burgers vector.

\mathbf{g}	$\mathbf{b}=\frac{a}{2}[0 \overline{1} 1]$	$\mathbf{b}=\frac{a}{2}[\overline{1} 01]$	$\mathbf{b}=\frac{a}{2}[011]$	$\mathrm{b}=\frac{a}{2}[101]$
400	0	2	0	2
040	2	0	2	0
311	0	1	1	2
$13 \overline{1}$	2	1	0	

g	$\|\mathrm{g} \cdot \mathrm{b}\|$	$\|\mathbf{g} \cdot \mathbf{b} \times \mathbf{u}\|$	$m=\frac{1}{8}\|\mathrm{~g} \cdot \mathbf{b} \times \mathbf{u}\|$
b, (a/2)[0ī1]; u,[ī 10$]$			
400	0	$\sqrt{2}$	0.18
040	2	$\sqrt{2}$	0.18
311	0	$5 / 2 \sqrt{2}$	0.22
131	1	$3 / 2 \sqrt{2}$	0.13
b, (a/2)[101]; u,[ī 10$]$			
400	2	$\sqrt{2}$	0.18
040	0	$\sqrt{2}$	0.18
311	1	$5 / 2 \sqrt{2}$	0.22
13 T	1	$3 / 2 \sqrt{2}$	0.13
b, (a/2)[011]; u,[1] 10$]$			
400	0	$\sqrt{2}$	0.18
040	2	$\sqrt{2}$	0.18
311	1	$3 / 2 \sqrt{2}$	0.13
13 T	1	$5 / 2 \sqrt{2}$	0.22
b, (a/2)[101]; u,[ī 10$]$			
400	2	$\sqrt{2}$	0.18
040	0	$\sqrt{2}$	0.18
311		$3 / 2 \sqrt{2}$	0.13
131	0	$5 / 2 \sqrt{2}$	0.22
b, (a/2)[0ī1]; u,[110]			
400	0	$\sqrt{2}$	0.18
040	2	$\sqrt{2}$	0.18
311	0	$1 / 2 \sqrt{2}$	0.05
13 T	1	$1 / 2 \sqrt{2}$	$0.05 \longleftarrow$
b, (a/2)[i01]; u,[110]			
400	2	$\sqrt{2}$	0.18
040	0	$\sqrt{2}$	0.18
311	1	$3 / 2 \sqrt{2}$	0.13
13 T	1	$3 / 2 \sqrt{2}$	0.13
b, (a/2)[011]; u,[110]			
400	0	$\sqrt{2}$	0.18
040	2	$\sqrt{2}$	0.18
311	1	$3 / 2 \sqrt{2}$	0.13
131	1	$3 / 2 \sqrt{2}$	0.13
b, (a/2)[101]; u,[110]			
400	2	$\sqrt{2}$	0.18
040	0	$\sqrt{2}$	0.18
311	2	$1 / 2 \sqrt{2}$	0.05
13 I	0	$1 / 2 \sqrt{2}$	0.05

Surface effects \& interfaces

400 two beam condition Images are axial dark field $\mathrm{s} \gg 0$
$s>0$
$\mathrm{s}=0$
$\mathrm{s}<0$
$\mathrm{s} \ll 0$

040 two beam condition Images are axial dark field

$$
\mathrm{s}=0
$$

$$
\mathrm{s}<0
$$

$$
\mathrm{s} \ll 0
$$

Surface effects \& interfaces

311 two beam condition Images are axial dark field
$\mathrm{s} \gg 0$
$\mathrm{s}>0$

$131 \overline{1}$ two beam condition Images are axial dark field

$$
\mathrm{s} \gg 0
$$

$$
s>0
$$

$$
\mathbf{s}=0
$$

$\mathrm{s}<0$
$\mathrm{s} \ll 0$

Dislocation contrast

Consider a pure screw dislocation:

$\vec{b}_{e}=0 ; \dot{b} \times \dot{u}=0$
$\stackrel{r}{R}=\stackrel{r}{b} \frac{\phi}{2 \pi}=\frac{\stackrel{r}{b}}{2 \pi} \tan \left(\frac{z-z_{d}}{x}\right)$
So: $\overrightarrow{\mathbf{R}} \propto \dot{\mathbf{b}}$
Thus: $\overrightarrow{\mathbf{g}} \cdot \dot{\mathbf{R}} \propto \mathbf{g} \cdot \dot{\mathbf{b}}$
"g dot b" contrast

Table 25.1. Different Burgers Vectors and Different
Reflections Give Different g•b=n Values ${ }^{a}$

\mathbf{g}	$\frac{1}{6}[11 \overline{2}]$	$\frac{1}{6}[1 \overline{2} 1]$	$\frac{1}{6}[\overline{2} 11]$	$\frac{1}{3}[111]$
$\pm(1 \overline{1} 1)$	$\pm 1 / 3$	$\pm 2 / 3$	$\pm 1 / 3$	$\pm 1 / 3$
$\pm(\overline{1} 1)$	$\pm 2 / 3$	$\pm 1 / 3$	$\pm 1 / 3$	$\pm 1 / 3$
$\pm(0 \overline{2} 2)$	± 1	± 1	0	0
$\pm(200)$	$\pm 1 / 3$	$\pm 1 / 3$	$\pm 2 / 3$	$\pm 2 / 3$
$\pm(3 \overline{1} 1)$	0	± 1	± 1	± 1
$\pm(\overline{3} \overline{1} 1)$	± 1	0	± 1	± 1

${ }^{a}$ The dislocations all lie on a (111) plane in an fcc material; the beam direction is [011].

Dislocation loops \& dipoles

Often dislocation loops formed by collapse of interstitials or vacancies

Can thus enclose intrinsic or extrinsic stacking faults, or may be no fault

Dislocations loops \& dipoles

Prismatic dislocation loops can nicely demonstrate $\overrightarrow{\mathbf{g}} \cdot \dot{\mathbf{b}}=0 \& \stackrel{\dot{g}}{\mathbf{g}} \cdot \dot{\mathbf{b}} \times \dot{\mathrm{u}}=0$ effects

Dislocations loops \& dipoles

Dislocation dipoles are essentially elongated loops Have no net Burgers vector, and thus no long range stress field
Exhibit same 'inside / outside' contrast on reverse of s

- Remember contrast origin tied to $(\overrightarrow{\mathbf{g}} \cdot \mathbf{b}) \mathrm{s}$

Dislocations interactions \& tangles

HVEM Image of slip along an inclined plane

Cold rolled alloy

A complex dislocation tangle

Surface effects \& interfaces

For a screw dislocation, only worry about $\overrightarrow{\mathbf{g}} \cdot \dot{\mathbf{b}}=\mathbf{0}$ However, even if $\overrightarrow{\mathbf{g}} \cdot \dot{\mathbf{b}}=0$ can see effects of surface relaxation

Surface effects \& interfaces

Oxides on TEM samples (an artifact) can pin dislocations

Surface effects \& interfaces

Interface misfit dislocations are a common class of defects to image Be aware of surface relaxation effects (i.e $\overrightarrow{\mathbf{g}} \cdot \vec{b} \times \mathbf{u} \neq 0$)

$\nabla_{10,1}$

Coherent precipitates \& islands

Strain field from coherent precipitates also give "g dot b contrast"

A line of zero contrast is observed perpendicular to \mathbf{g}

