Diffraction contrast imaging

Lecture 12 Part 1

Review: Planar faults Strain fields - generally Dislocations Coherent precipitates

Strain fields

As with planar faults, strain fields also introduce changes in the location of atoms within the crystal

In other words, any strain field introduces an $\vec{R}(\vec{r}_n')$, where:

With planar faults, the shift between one lattice and the next is single valued What happens if the strain field is continuous?

Modification of H-W Eqns

Possible to re-write the H-W Eqns in a different form, which incorporates a continuous $\vec{R}(\vec{r}_n')$

- Use a different substitution of variables than in previous derivation (planar case)
- Yields:

A dislocation is a line defect which bounds one region of a crystal that has slipped with respect to another

Is thus the crystal defect that mediates plastic (irreversible) flow in a crystal

The slip that occurs is a discrete increment of lattice translation

- This slip increment has both a magnitude & a direction
- It can be described by a vector (called it's Burgers vector)
- It can be either a full or partial lattice vector

Parameters of interest:

- Burgers vector: want to characterize both magnitude & direction
- Line direction: what crystallographic direction does the dislocation line lie along
- Slip (or glide) plane: what plane does the dislocation move along when a stress is applied

Additionally:

- How does it interact with other dislocations & defects?
- Is the dislocation straight, jogged or kinked?

Why do we care?

 These parameters can (with other insights) be used to understand the characteristics of plastic deformation in a material

Edge dislocations

- Extra 'half plane' present in the sample
- **b**⊥u
- Slip confined to a plane that contains both $\vec{b} \& \vec{u}$
- Any dislocation introduces distortion (strain!) in the lattice
- It is this distortion & the local changes in diffraction condition that we image

Dislocations interactions & tangles

HVEM Image of slip along an inclined plane

A complex dislocation tangle

Cold rolled alloy

Surface effects & interfaces

Interface misfit dislocations are a common class of defects to image

Be aware of surface relaxation effects (i.e $\vec{g} \cdot \mathbf{b} \times \mathbf{u} \neq 0$)

Edge dislocations

- Extra 'half plane' present in the sample
- **b**⊥u
- Slip confined to a plane that contains both $\vec{b} \& \vec{u}$
- Any dislocation introduces distortion (strain!) in the lattice
- It is this distortion & the local changes in diffraction condition that we image

Modification of H-W Eqns

Possible to re-write the H-W Eqns in a different form, which incorporates a continuous $\vec{R}(\vec{r}_n')$

- Use a different substitution of variables than in previous derivation (planar case)
- Yields:

Edge dislocations

- Extra 'half plane' present in the sample
- **b**⊥u
- Slip confined to a plane that contains both $\vec{b} \& \vec{u}$
- Any dislocation introduces distortion (strain!) in the lattice
- It is this distortion & the local changes in diffraction condition that we image

This shows conceptually (left) and fully (right) the strain field around a perfect edge dislocation

The strain field around screw and mixed are a bit more complicated to display ...

Screw dislocation

- **b**́∥**ū**́
- Can slip along any plane
- Again, we image the strain field

Mixed dislocation

- \vec{b} neither perpendicular nor parallel to \vec{u}
- Thus, each mixed dislocation can be resolved into edge components and screw components

Calculating dislocation contrast

We use the "column approximation"

This is where we said we'd ignore variations in dz with changes in z

Calculating dislocation contrast

- So, divide the sample into narrow columns
- Calculate the amplitude of ϕ_o and ϕ_g for each column What is R?
 - Need to go to elasticity theory
 - Find:

$$\vec{R} = \frac{1}{2\pi} \left\{ \begin{matrix} r \\ b\phi \end{matrix} + \frac{1}{4(1-\nu)} \end{matrix} \right] \begin{matrix} r \\ b_e \end{matrix} + \begin{matrix} r \\ b \times \begin{matrix} r \\ b \end{matrix} \left(2(1-2\nu) nr + \cos 2\phi \right) \end{matrix} \right\}$$

 Or if doing computationally, use anisotropic elasticity theory, or simulation output

Consider a pure screw dislocation:

$$\vec{b}_{e} = 0 ; \vec{b} \times \vec{u} = 0$$

$$r = r + \frac{r}{2\pi} + \frac{r}{2\pi} + \frac{r}{2\pi} tan\left(\frac{z - z_{d}}{x}\right)$$

Table 25.1. Different Burgers Vectors and Different Reflections Give Different $g \cdot b = n$ Values^a

g b	$\frac{1}{6}[11\bar{2}]$	$\frac{1}{6}[1\bar{2}1]$	$\frac{1}{6}$ [211]	$\frac{1}{3}$ [111]
$\begin{array}{l} \pm (1\bar{1}1) \\ \pm (1\bar{1}1) \\ \pm (0\bar{2}2) \\ \pm (200) \\ \pm (3\bar{1}1) \\ \pm (3\bar{1}1) \end{array}$	$\pm 1/3$ $\pm 2/3$ ± 1 $\pm 1/3$ 0 ± 1	$\pm 2/3$ $\pm 1/3$ ± 1 $\pm 1/3$ $\pm 1/3$ ± 1 0	$\pm 1/3$ $\pm 1/3$ 0 $\pm 2/3$ ± 1 ± 1	$\pm 1/3$ $\pm 1/3$ 0 $\pm 2/3$ ± 1 ± 1

^{*a*}The dislocations all lie on a (111) plane in an fcc material; the beam direction is [011].

Thus: $\vec{g} \cdot \dot{\vec{R}} \propto \dot{\vec{g}} \cdot \dot{\vec{b}}$ "g dot b" contrast

So: R ∞ **b**

Modification of H-W Eqns

Possible to re-write the H-W Eqns in a different form, which incorporates a continuous $\vec{R}(\vec{r}_n')$

- Use a different substitution of variables than in previous derivation (planar case)
- Yields:

Consider a pure screw dislocation:

$$\vec{b}_{e} = 0 ; \dot{b} \times \dot{u} = 0$$

$$r = r + \frac{r}{2\pi} + \frac{r}{2\pi} + \frac{r}{2\pi} tan\left(\frac{z - z_{d}}{x}\right)$$

Table 25.1. Different Burgers Vectors and Different Reflections Give Different $g \cdot b = n$ Values^a

g b	$\frac{1}{6}[11\bar{2}]$	$\frac{1}{6}[1\bar{2}1]$	$\frac{1}{6}$ [211]	$\frac{1}{3}$ [111]
$\begin{array}{l} \pm (1\bar{1}1) \\ \pm (1\bar{1}1) \\ \pm (0\bar{2}2) \\ \pm (200) \\ \pm (3\bar{1}1) \\ \pm (3\bar{1}1) \end{array}$	$\pm 1/3$ $\pm 2/3$ ± 1 $\pm 1/3$ 0 ± 1	$\pm 2/3$ $\pm 1/3$ ± 1 $\pm 1/3$ $\pm 1/3$ ± 1 0	$\pm 1/3$ $\pm 1/3$ 0 $\pm 2/3$ ± 1 ± 1	$\pm 1/3$ $\pm 1/3$ 0 $\pm 2/3$ ± 1 ± 1

^{*a*}The dislocations all lie on a (111) plane in an fcc material; the beam direction is [011].

Thus: $\vec{g} \cdot \dot{\vec{R}} \propto \dot{\vec{g}} \cdot \dot{\vec{b}}$ "g dot b" contrast

So: R ∞ **b**

Modification of H-W Eqns

Possible to re-write the H-W Eqns in a different form, which incorporates a continuous $\vec{R}(\vec{r}_n')$

- Use a different substitution of variables than in previous derivation (planar case)
- Yields:

Consider a pure screw dislocation:

$$\vec{b}_{e} = 0 ; \dot{b} \times \dot{u} = 0$$

$$r = r + \frac{r}{2\pi} + \frac{r}{2\pi} + \frac{r}{2\pi} tan\left(\frac{z - z_{d}}{x}\right)$$

Table 25.1. Different Burgers Vectors and Different Reflections Give Different $g \cdot b = n$ Values^a

g b	$\frac{1}{6}[11\bar{2}]$	$\frac{1}{6}[1\bar{2}1]$	$\frac{1}{6}$ [211]	$\frac{1}{3}$ [111]
$\begin{array}{l} \pm (1\bar{1}1) \\ \pm (1\bar{1}1) \\ \pm (0\bar{2}2) \\ \pm (200) \\ \pm (3\bar{1}1) \\ \pm (3\bar{1}1) \end{array}$	$\pm 1/3$ $\pm 2/3$ ± 1 $\pm 1/3$ 0 ± 1	$\pm 2/3$ $\pm 1/3$ ± 1 $\pm 1/3$ $\pm 1/3$ ± 1 0	$\pm 1/3$ $\pm 1/3$ 0 $\pm 2/3$ ± 1 ± 1	$\pm 1/3$ $\pm 1/3$ 0 $\pm 2/3$ ± 1 ± 1

^{*a*}The dislocations all lie on a (111) plane in an fcc material; the beam direction is [011].

Thus: $\vec{g} \cdot \dot{\vec{R}} \propto \dot{\vec{g}} \cdot \dot{\vec{b}}$ "g dot b" contrast

So: R ∞ **b**

Consider a pure screw dislocation:

$$\vec{b}_{e} = 0 ; \dot{b} \times \dot{u} = 0$$

$$r = r + \frac{r}{2\pi} + \frac{r}{2\pi} + \frac{r}{2\pi} tan\left(\frac{z - z_{d}}{x}\right)$$

Table 25.1. Different Burgers Vectors and Different Reflections Give Different $g \cdot b = n$ Values^a

g b	$\frac{1}{6}[11\bar{2}]$	$\frac{1}{6}[1\bar{2}1]$	$\frac{1}{6}$ [211]	$\frac{1}{3}$ [111]
$\begin{array}{l} \pm (1\bar{1}1) \\ \pm (1\bar{1}1) \\ \pm (0\bar{2}2) \\ \pm (200) \\ \pm (3\bar{1}1) \\ \pm (3\bar{1}1) \end{array}$	$\pm 1/3$ $\pm 2/3$ ± 1 $\pm 1/3$ 0 ± 1	$\pm 2/3$ $\pm 1/3$ ± 1 $\pm 1/3$ $\pm 1/3$ ± 1 0	$\pm 1/3$ $\pm 1/3$ 0 $\pm 2/3$ ± 1 ± 1	$\pm 1/3$ $\pm 1/3$ 0 $\pm 2/3$ ± 1 ± 1

^{*a*}The dislocations all lie on a (111) plane in an fcc material; the beam direction is [011].

Thus: $\vec{g} \cdot \dot{\vec{R}} \propto \dot{\vec{g}} \cdot \dot{\vec{b}}$ "g dot b" contrast

So: R ∞ **b**

Calculating dislocation contrast

- So, divide the sample into narrow columns
- Calculate the amplitude of ϕ_o and ϕ_g for each column What is R?
 - Need to go to elasticity theory
 - Find:

$$\vec{R} = \frac{1}{2\pi} \left\{ \begin{matrix} r \\ b\phi \\ + \frac{1}{4(1-\nu)} \end{matrix} \right] \begin{bmatrix} r \\ b_e \\ + b \\ \times u \\ (2(1-2\nu))nr + \cos 2\phi \\) \end{bmatrix} \right\}$$

 Or if doing computationally, use anisotropic elasticity theory, or simulation output

Now for pure edge

 $\vec{b} = \dot{b}_{e}$; $\dot{b}_{e} \times \dot{u} \neq 0$ So R has both a $\vec{g} \cdot \dot{b}$ & a $\vec{g} \cdot \dot{b} \times \dot{u}$ term

More on 'g dot b' contrast

Often said that when $\vec{g} \cdot \vec{b} = 0$ the dislocation is 'invisible'

This is because the lattice distortion is on diffracting planes parallel to R

- You won't see it's effect

More to it (unfortunately) Firstly, what is 'invisible'? Generally if $\vec{g} \cdot \vec{b} < \frac{1}{3}$ the contrast is faint More importantly, even if $\vec{g} \cdot \vec{b} = 0$ can have $\vec{g} \cdot \vec{b} \times \vec{u} \neq 0$

So, really need to find conditions where both $\vec{g} \cdot \vec{b} = 0$ & $\vec{g} \cdot \vec{b} \times \vec{u} = 0$ if possible

May have to settle for $\vec{g} \cdot \vec{b} = 0$ & $\vec{g} \cdot \vec{b} \times \vec{u} \le 0.64$

