X-ray production in the TEM

Lecture 18



What is an x-ray?

X-rays are electromagnetic
radiation oy oo
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Bremsstrahlung X-ray emission

“Braking” radiation

Electron is decelerated
by Coulomb (charge)
field of the nucleus

Electromagnetic
radiation (x-ray) is
emitted

Can have any energy
less than the incident
energy




Bremsstrahlung X-ray emission

Resulting x-ray emission is
forward peaked

— As incident electron energy
goes, up the x-ray emission
is more strongly forward
peaked.

———————
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distribution of
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Bremsstrahlung X-ray emission

Results in a continuous
background signal in
an intensity vs. energy
spectrum

Theoretical

Extends from low
energies to up to the
incident beam energy

X-ray intensity

Observed

X-ray energy



Bremsstrahlung X-ray emission

Why do we care?

1. Forms a background signal under the signal
of interest

— Once a photon is created with a given energy, we
cannot know what caused it

-~ In other words, did the count in our spectrometer at a given
energy come from a bremsstrahlung x-ray or a
characteristic x-ray

— Generally, this is nuisance in x-ray spectroscopy

2. But, carries information about the atomic
number of the specimen

— Can be useful in biological analyses



Reminder: quantum numbers

Atom composed of positively charged nucleus,
surrounded by electrons

Each electrons has a given energy
— Described by quantum numbers

— These are the eigen-solutions to the Schrodinger Equation:

n=1,2,3....

| = 0,1,2, ..., n-1
J=1+s, whereS:i%
m, <|j

Electrons subject to Pauli’s Exclusion Principle:

— No two electrons can have the exact same set of quantum
numbers (and thus same energy)



Inner shell ionization

Incident electron | |
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http://www.matter.org.uk/tem/electron_atom_interaction/x-ray and_auger.htm emission emission



http://www.matter.org.uk/tem/electron_atom_interaction/x-ray_and_auger.htm

Characteristic X-rays

Incoming

One such transition is: e
1. Incident electron }  Conduction band
ionizes atom m!mic e ,’
2. Electron from outer evel E:L.i —-0-:—:10-_‘;
she!l fills the hole left in [ EL, ° "E""‘" s
the inner shell b — o X-rays
3. Results in the emission | o Enerey-los
of an x-ray Nuges

Importantly, the energy of the resultant x-ray is
characteristic of the atom

 Energy levels are specific to each atom

* Thus difference between energy levels is also



Characteristic X-rays

Nomenclature used is “ Removod
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Reminder: spectroscopic notation

Shells and Subshells of Atoms

X-ray Quantum numbers Maximum

notation electron
n l Jj  m population

K 1 0 1 11 2

L, 2 0 1 4! 2

Ly 2 1 E S 2

L 2 1 1 13, +1 4

M, 3 0 S 2

M, 3 1 1 4l 2

My 3 1 3 43, 4] 4

My, 3 2 3 43 41 4

M, 3 2 3 43, 13, +1 6

N 4 0 1 31 2

Ny 4 1 e 2

N 4 1 3 13, 13 4

Ny 4 2 3 43 41 4

Ny 4 2 3 13, 43, +1 6

N 4 3 3 43, 43, +1 6

Nyn 4 3 I £, 43, 13, 11 8




Characteristic X-rays

X-rays, as EM radiation can

L, M, M;- Auger electron
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Characteristic X-rays
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Auger electron emission

Incident electron removes inner

A
shell electron | e T
Outer shell electron fills empty I Vacuum
h0|e O Ec Conduction
Instead of x-ray emission, an ] ————E; Dband
electron from a higher shell is il e Voo
ejected b ha
These electrons have a
characteristic energy
. . I, —O-e—ee L
— Eq-E, 3 in this case > oo L,
— Favored in light atoms E, L,
1
Most Auger electrons are .
absorbed by the lattice electron
beam
— Only those at the surface (e.g., 100keV)\
escape
P Ex &-O— K
— Auger spectroscopy (AES) \ Energy-loss

requires UHV electron



Side note ...
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“Coster-Kronig” transition

— Transitions of electrons from a higher states in a sub-shell to vacancies
in a lower sub-shell

— Energy transferred to an electron near the Fermi Level
— Can be important when considering fluorescence quantitatively (SEM)



Characteristic X-rays

Critical Ionization

lonization requires a critical Encrgiesfor Platinum _
energy E C Shell Cr;t;z?lg;o&lzziy)on
— K shell ionization energy > L shell > K 78.39
M shell ... il ggg
— Varies with element (makes sense!) ; 1;-;26
— Note: ionization energy does not My 3020
equal energy of the emitted x-ray Mry 2202

M, 2.122

Can describe a cross-section (probability that ionization
will occur)

— Mathematical form not of interest here

— Two useful outcomes

- The electron that caused the ionization undergoes a small angular
deviation

- The resultant characteristic x-ray is emitted uniformly over 4=
steradian



Fluorescence yield

Partitioning between x-
ray emission and
Auger electron
emission varies by
element

Mathematically:

o+a=1
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Fluorescence yield

K shell

fluorescence
ield
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Strong atomic # dependence:
— One C K, X-ray generated per 1000 ionization events

— One Ge K X-ray generated per 2 ionization events



Fluorescence yield

Approximate probability of occurrence

L,- L,- L,-0.01
0.03 |0.04

|wIINIV -

0.01

You are only likely to see the a & B lines of a given family

— Unless you have very good signal and take a long acquisition

Note, you cannot compare across families

— Relative probabilities between K, L, M & N vary with element



Characteristic X-rays
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Characteristic X-ray Energy

Moseley’s Law:
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