STEM Imaging

Lecture 17

Much of the material for this class is courtesy
Nigel Browning of UC Davis & LLNL
and
Dave Muller of Cornell

Outline

How does it work?
Inelastic scattering (some review, some new)
Instrumental and alignment concerns
Image artifacts

Examples spread throughout

Operational principle

Courtesy Nigel Browning

Probe channeling

Reciprocity

In certain instances, TEM & **STEM** images are strictly equivalent

"Theorem of Reciprocity"

Sample

Sample

	TEM	STEM
Coherent illumination	Small Condenser Aperture	Small Collector Aperture
Incoherent illumination	Hollow cone illumination	HAADF

Screen

Nomenclature

depends on machine type

Electron sources

A small bright source is necessary for STEM

		Thermal emission		Field emission					
		W	LaB ₆	Shottky ZrO/W	Thermal FE W (100)	Cold FE W (310)			
Brightness (A	A/cm ² /sr) at 200kV	~5x10 ⁵	~5x10 ⁶	~5x10 ⁸	~5x10 ⁸	~5x10 ⁸			
Electron Sou	Electron Source Size		10μm	0.1-1μm	10-100nm	10-100nm			
Energy Widtl	Energy Width (ev)		1.5	0.6-0.8	0.6-0.8	0.3-0.5			
Operating Conditions	Vacuum (Pa)	10 ⁻³	10 ⁻⁵	10 ⁻⁷	10 ⁻⁷	10 ⁻⁸	10 ⁻⁹		
	Temperature (K)	2800	1800	1800	1600	300			
Emission	Current (μA)	~100	~20	~100	20-100	5-20			
	Short term stability	1%	1%	1%	7%	5%	2%		
	Long term stability	1%/hr	3%/hr	1%/hr	6%/hr	20%	10%		
Maintenance		Not necessary	Not necessary	Start-up takes time	Build up necessary after change	Flash every few hours			
Price & Oper	ation	Low & simple	Low & simple	High & easy	High & easy	High & complicated ?		_	
Lifetime		3 months	1 year	>4 years	?	?	1 year		

Courtesy Nigel Browning

Demagnification

Probe forming optics

James and Browning, *Ultramicroscopy* **78**, 125 (1999)

Scattering

For perfect crystals, four sources that give high-angle scatter

- Rutherford scattering
 - Elastic
 - Proportional to square of atomic weight (∞ Z²)
- Higher Order Laue Zone reflections
 - Elastic
 - Important in thin samples
- Thermal diffuse scattering (TDS)
 - Scatter from phonons (lattice vibrations)
 - Not strictly proportional to Z²
 - Depends on b (low angles screened by other planes in lattice)
 - Measured between Z^{1.5} and Z^{1.7}
- Electron Compton scattering
 - Inelastic scatter off of the electrons

Types of STEM images

Bright-field

- Collect central beam with a small collection angle
- Contains elastic (Rutherford), phonon, plasmon and Compton

Low-angle annular dark field

- Collection angle of 25 50 milliradians (mrad)
- Mostly phonon scatter

High-angle annular dark field

- Collection angle of 50 250 mrad
- Largely phonon scatter (TDS)

Images from S.J. Pennycook

BF-STEM

Images courtesy Dave Muller

In STEM, energy losses in sample to do not contribute to chromatic aberration (averaged over collector ...)

Finding increasing use in semiconductor quality control

BF-STEM

"Reciprocity"

But - HRTEM is certainly quicker, no 'scan noise'

Low-angle annular dark field (LAADF)

Strain fields cause de-channeling and scattering to small angles

Low-angle annular dark field (LAADF)

Here contrast is correlated with oxygen vacancies

HAADF "Z" map

LAADF
"Strain" map
Thin x/s

LAADF
"Strain" map
Thick x/s

Images courtesy Dave Muller

High angle annular dark field (HAADF)

No contrast reversals with thickness Directly 'interpretable' images

- If you see a white blob, there's an atom column there
- Caveat: the person taking (& processing) the image knew what they were doing ...

Screw dislocation core in GaN

HAADF of dislocation cores

$$\frac{1}{3}[113] \to \frac{1}{3}[110] + [001]$$

$$or$$

$$\frac{1}{3}[11\bar{2}3] \to \frac{1}{3}[11\bar{2}0] + [0001]$$

HAADF images

This is in image of a Si3N4 sample at a grain boundary lined with amorphous glass.

The effect of different dopant types can be seen

HAADF of grain boundaries

HAADF often used to study grain boundaries and interfaces

Direct atom positions combined with EELS spectroscopy

Difference in intensity due to locally different phonon scattering

- Local lattice relaxation allows different phonon modes
- "Huang Scatter"

Grain boundary in SrTiO₃

HAADF of dislocation cores

$$\frac{1}{3}[113] \to \frac{1}{3}[110] + [001]$$
or

$$\frac{1}{3}[11\bar{2}3] \rightarrow \frac{1}{3}[11\bar{2}0] + [0001]$$

Imaging individual dopant atoms (Sb in Si)

Null test:

No Sb in substrate

Sb source turned on here No Sb in substrate

P. Voyles, D. Muller, J. Grazul, P. Citrin, H. Gossmann, Nature 416 826 (2002)

Alignment

Electron "Ronchigram"

$$M = \frac{v}{u}$$

Easiest method of alignment

Easiest way to find optic axis

Easiest way to correct astigmatism

Easiest way to find focus

Works best on amorphous material

Start with largest aperture and work your way down

Ronchigrams from Si <110>

Courtesy Nigel Browning

Correcting for astigmatism

Two fold astigmatism

Three fold astigmatism

Forming the Smallest Probe

Put aperture over area of constant phase in Ronchigram to give CBED pattern

Forming the dark field image

High-angle detector integrates many spots in the CBED pattern

Optimum resolution

balance C_s and aperture angle

Remember aperture introduced diffraction effect on resolution

Optimum resolution

Using wave optics, find:

Minimum spot size:
$$d_{min} = 0.43 C_s^{1/4} \lambda^{1/4}$$

Optimum aperture size:
$$\alpha_{opt} = \left(\frac{4\lambda}{C_s}\right)^{1/4}$$

At 200kV, $\lambda = 0.0257$ Å

$$C_s = 1.0$$
 mm, $d_{min} = 1.55$ Å and $\alpha_{opt} = 10$ mrad

$$C_s$$
 = 1.2 mm, d_{min} = 1.59Å and α_{opt} = 9.6 mrad

$$C_s$$
 = 0.5 mm, d_{min} = 1.28Å and α_{opt} = 12 mrad

$$C_s$$
 = 0.6 mm, d_{min} = 1.34Å and α_{opt} = 11 mrad

Effect of C_s Correction

Cs correction opens up the aperture angle
Allows a much smaller probe

Batson, Dellby and Krivanek, Nature 418, 617 (2002)

Effect of C_s correction

Direct resolution at 0.78 Å

Information transfer to 0.607 Å

Image by Matt Chisholm,

Processing by Albina Borisevich and Andy Lupini

Aberration correction by Pete Nellist et al., Nion Co.

Nellist et al., Science 305, 2004.

Stability issues for STEM

(and for TEM!)

Stray Fields/Ground loops
Air Flow/Temperature Control
Pressure Variations
Mechanical Vibrations
Specimen Preparation

D. A. Muller, J. Grazul, Journal of Electron Microscopy, 50 (2001) 219.

Effect of C_s correction

Direct resolution at 0.78 Å

Information transfer to 0.607 Å

Image by Matt Chisholm,

Processing by Albina Borisevich and Andy Lupini

Aberration correction by Pete Nellist et al., Nion Co.

Nellist et al., Science 305, 2004.

Image 'artifacts'

"probe tails"

Can tweak probe shape to get a narrower probe

But, gives 'tails' in the distribution

These give 'extra spots' in the diffraction pattern

- The presence of extra spots can be confuse resolution determination
- Now people used images along known projections

James and Browning, *Ultramicroscopy* **78**, 125 (1999)

Effect of C_s correction

Direct resolution at 0.78 Å

Information transfer to 0.607 Å

Image by Matt Chisholm,

Processing by Albina Borisevich and Andy Lupini

Aberration correction by Pete Nellist et al., Nion Co.

Nellist et al., Science 305, 2004.

Image artifacts 'clipping'

From S.J. Pennycook

Effect of C_s correction

Direct resolution at 0.78 Å

Information transfer to 0.607 Å

Image by Matt Chisholm,

Processing by Albina Borisevich and Andy Lupini

Aberration correction by Pete Nellist et al., Nion Co.

Nellist et al., Science 305, 2004.