

Engineering Space for Light with Metamaterials

Part 1: Electrical and Magnetic Metamaterials

Part 2: Negative-Index Metamaterials, NLO, and super/hyper-lens

Part 3: Cloaking and Transformation Optics

Outline

- What are metamaterials?
- Early electrical metamaterials
- Magnetic metamaterials
- Negative-index metamaterials
- Chiral metamaterials
- Nonlinear optics with metamaterials
- Super-resolution
- Optical cloaking and Transformation Optics

Other versions of cloak/invisibility/transparency

Plasmonic scattering ancellation

Alu and Engheta, PRE, 72, 016623, 2005

Anomalous localized resonance

Nicorovici, McPhedran and Milton, PRB, 1994 Milton & Nicorovici, Proc. R. Soc. A, 2006

Other schemes include tunneling light transmissions (de Abajo), active sources (Miller), invisible fish-scale structure (Zheludev et al)

Invisibility: An Ancient Dream

Perseus' helmet (Greek mythology)

Cloaking devices (Star Trek, USA)

Ring of Gyges ("The Republic", Plato)

The 12 Dancing Princesses (Brothers Grimm, Germany)

Harry Potter's cloak (J. K. Rowling, UK)

Invisibility in Nature: Chameleon Camouflage

Invisibility by Transformation of Time-Space

Invisibility to Radar: Stealth Technology

Stealth technique:

Radar cross-section reductions by absorbing paint / nonmetallic frame / shape effect...

The camera + projector approach

College

of Engineering

PURDUE

From: http://www.star.t.u-tokyo.ac.jp

Invisibility: from fiction to fact?

Examples with scientific elements:

The Invisible Man by H. G. Wells (1897)

"The invisible woman" in The Fantastic 4 by Lee & Kirby (1961)

<u>"... she achieves these feats by</u> <u>bending all wavelengths of light in</u> <u>the vicinity around herself</u>... <u>without opting any visible</u> <u>distortion</u> Introduction from Wikipedia

A mad killer might be standing You won't know Until its t

EATTASTIC FOUR

Pendry et al.; Leonhard, Science, 2006 (Earlier work: cloak of thermal conductivity by Greenleaf et al., 2003)

Birck Nanotechnology Center

College

PURDUE

Spatial profile of ϵ & μ tensors determines the distortion of coordinate

Seeking for profile of ϵ & μ to make light avoid particular region in space — optical cloaking

Pendry et al., Science, 2006

A similarity in Mother Nature

The bending of light due to the gradient in refractive index in a desert mirage

Cloaking based on coordinate transformation

General math. requirements and microwave demonstrations

Structure of the cloak

Ideal case

Reduced parameter

Experimental data

Schurig et al., Science, 2006

-5

0

-10

Scaling the microwave cloak design? [®] Intrinsic limits to the scaling of SRR size [®] High loss in resonant structures

College

^{of}Engineering

$$\mathcal{E}_{r} = \mu_{r} = \frac{r-a}{r}, \quad \mathcal{E}_{\theta} = \mu_{\theta} = \frac{r}{r-a}, \quad \mathcal{E}_{z} = \mu_{z} = \left(\frac{b}{b-a}\right)^{2} \frac{r-a}{r}$$

$$\mathbf{TM \text{ incidence}}$$

$$\begin{cases} \mu_{z} = \left(\frac{b}{b-a}\right)^{2} \frac{r-a}{r} & \text{To maintain} \\ \text{the dispersion} \\ \text{relation} \\ \mathcal{E}_{\theta} = \frac{r}{r-a} \\ \mathcal{E}_{r} = \frac{r-a}{r} & \begin{cases} \mu_{z} \mathcal{E}_{\theta} = \text{constant} \\ \mu_{z} \mathcal{E}_{r} = \text{constant} \\ \text{(for in-plane } k) \end{cases} \quad \begin{cases} \mu_{z} = 1 \\ \mathcal{E}_{\theta} = \left(\frac{b}{b-a}\right)^{2} \\ \mathcal{E}_{r} = \left(\frac{b}{b-a}\right)^{2} \end{cases}$$

H

- No magnetism required!
- A constant permittivity of a dielectric; $\mathcal{E}_{\theta} > 1$
- Gradient in *r* direction only; ε_r changing from 0 to 1.

Cai, et al., Nature Photonics, 1, 224 (2007)

Optical Cloaking with Metamaterials: Can Objects be Invisible in the Visible?

College

^{of}Engineering

Purdue

Cover article of Nature Photonics (April, 2007)

Structure of the cloak: "Round brush"

Unit cell:

Flexible control of ε_r ; Negligible perturbation in ε_{θ}

metal needles embedded in dielectric host

Cai, et al., Nature Photonics, 1, 224 (2007)

Cloaking performance: Field mapping movies

Example: Non-magnetic cloak @ 632.8nm with silver wires in silica

Cloak OFF

Cloak ON

Plasmonic cloaking (Smolyaninov et al - collaboration)

Scattering issue in a linear non-magnetic cloak

Η.

E

Linear transformation

Ideal cloak:

$$Z\Big|_{r=b} = \sqrt{\frac{\mu_z}{\mathcal{E}_{\theta}}}\Big|_{r=b} = 1$$

Perfectly matched impedance results in zero scattering

Linear non-magnetic cloak:

$$Z\Big|_{r=b} = \sqrt{\frac{\mu_z}{\varepsilon_{\theta}}}\Big|_{r=b} = 1 - \frac{a}{b}$$

Detrimental scattering due to impedance mismatch

Nonlinear transformation -> no scattering

High-order transformations to minimize scattering

Cai, et al., App. Phys. Lett, 91, 111105 (2007)

Designs of optical cloak with **high-order** transformations

Examples in cylindrical system

Example: Optimized quadratic transformation

A second-order transformation for non-magnetic cloak with minimized scattering

$$r = g(r') = \left[1 - a/b + p(r' - b)\right]r' + a$$
 with $p = a/b^2$

Reduced scattering from nonlinear cloak

Normalized scattered field

Suppression in both magnitude and directivity

Scattering radiation pattern

Towards experimental realization

We need a design that is ...

• Less complicated in fabrication Compatibility with mature fabrication techniques like direct deposition and direct etching

• **Better loss features** Loss might be ultimate limiting issue for cloaking

Structures of realistic "nonlinear" TO cloaks

 ϵ found from Wiener's bounds

cloak @ 532 nm with alternating silver- silica slices based on nonlinear transformations

Engineering Meta-Space for Light: via Transformation Optics *Kildishev, VMS (OL, January 2008)*

Fermat: $\delta \int n dI = 0$ $n = \sqrt{\varepsilon(r)}\mu(r)$

"curving" optical space

Flat hyperlens: 1/2- & '1/4-body lenses

Light concentrator

27

Take Home Messages:

- Metamagnetics with rainbow colors
- (single-negative) MM with n = -0.9 at 770nm (double-negative) MM with n = -1 at 810 nm
- Chiral metamaterials
- •NLO with NIMs

College

^{of} Engineering

PURDUE

- Super-resolution
- Optical cloak of invisibility
- Engineered meta-space for light

Highlights of Purdue "Meta-Research"

Purdue Photonic Metamaterials

- (a) 1-st optical negative-index MM (1.5 µm; 2005)
- (b) double-negative MM at shortest λ (~800nm; 2007)
- (c) 1-st magnetic MM across entire visible (2007)

Transformation Optics with MMs: Flat hyperlens, concentrator, and cloak

Cast of Characters

Just published