Dynamical effects in diffraction patterns

Lecture 7

Outline

Dynamic diffraction - the idea

Origin of Kikuchi maps

Examples of Kikuchi maps

Using Kikuchi maps:

- Precise orientation determination
- Setting the value of s

Double diffraction

Forbidden reflections

Dynamical diffraction

Radiation	Elastic Mean Free Path (Å)	Absorption Length (Å)
Neutrons	10 ⁸	10 ⁹
X-rays	104	10 ⁶
Electrons	10 ²	10 ³

Electrons interact strongly with matter

Mean free path before interaction is ≈ 100Å

We have been considering only 'kinematical' diffraction to date

- Single diffraction events
- 'First Born approximation"

Dynamical diffraction

In reality, have dynamical diffraction conditions in nearly all cases

Has important effects on:

- Diffraction intensities
- Image contrast
- Features in diffraction patterns

Simplified schematic of dynamical scattering

Kikuchi lines origin

Results in a cone of diffracted intensity, which intersects Ewald sphere as hyperbolae

Example Kikuchi pattern

Kikuchi lines connect zone axes that share a family of planes

Provide a "road map" of reciprocal space

Example Kikuchi pattern

Kikuchi lines origin

Results in a cone of diffracted intensity, which intersects Ewald sphere as hyperbolae

Kikuchi lines connect zone axes that share a family of planes

Provide a "road map" of reciprocal space

Example Kikuchi pattern

Kikuchi lines & maps

example: fcc

001

Kikuchi lines connect zone axes that share a family of planes

Provide a "road map" of reciprocal space

example: hcp

precise orientation determination

Can determine orientation to 0.1°

Simple exercise in geometry

Generally, not needed, as you use Kikuchi lines to help you tilt to major poles

precise orientation determination

Magnitude & sign of s important in image

Kikuchi lines used to 'set' s

If excess line between g & 0, s is negative

If excess line on opposite side of g, s is positive

$$s = \frac{x}{R} \lambda \left| \stackrel{r}{g} \right|^2$$

250 nm

Double diffraction

Frequent cause of extra spots, esp in thin films on substrates

Each diffraction spot from top crystal becomes direct beam for second diffraction event

Note a great way to check for this / eliminate it, is to turn the sample upside down!

Double diffraction

Frequent cause of extra spots, esp in thin films on substrates

Each diffraction spot from top crystal becomes direct beam for second diffraction event

Note a great way to check for this / eliminate it, is to turn the sample upside down!

Forbidden Reflections

Can have 'forbidden reflections' in a diffraction pattern if dynamical scattering occurs.

Must have a vector addition to get the beam. Example

Can see 200 in silicon 110 zone axis

$$11\overline{1} + 1\overline{1}1 = 200$$

 Cannot see 200 in 100 zone axis - 111's not present

Simplified schematic of dynamical scattering

Forbidden Reflections

$$11\overline{1}+1\overline{1}1=200$$

Double diffraction

Frequent cause of extra spots, esp in thin films on substrates

Each diffraction spot from top crystal becomes direct beam for second diffraction event

Note a great way to check for this / eliminate it, is to turn the sample upside down!

