

Engineering Space for Light with Metamaterials

Part 1: Electrical and Magnetic Metamaterials

<u>Part 2: Negative-Index Metamaterials, NLO,</u> <u>and super/hyper-lens</u>

Part 3: Cloaking and Transformation Optics

Outline

- What are metamaterials?
- Early electrical metamaterials
- Magnetic metamaterials
- Negative-index metamaterials
- Chiral metamaterials
- Nonlinear optics with metamaterials
- Super-resolution
- > Optical cloaking

Negative refractive index: A historical review

Sir Arthur Schuster Sir Horace Lamb

... energy can be carried forward at the group velocity but in a direction that is anti-parallel to the phase velocity... Schuster, 1904

> Negative refraction and backward propagation of waves Mandel'stam, 1945

L. I. Mandel'stam

Left-handed materials: the electrodynamics of substances with simultaneously negative values of ε and μ

Veselago, 1968

Pendry, the one who whipped up the recent boom of NIM researches

Perfect lens (2000) EM cloaking (2006)

Sir John Pendry

V. G. Veselago

Metamaterials with Negative Refraction

Refraction:

$$n^{2} = \varepsilon \mu$$
$$n = \pm \sqrt{\varepsilon \mu}$$

<u>Warning!</u> Negative refraction ≠ negative refractive index (e.g. see Peccianti & Assanto: OE, 2007)

> Figure of merit F = |n'|/n''

n < 0, if $\epsilon' |\mu| + \mu' |\epsilon| < 0$

 $\frac{\text{Single-negative:}}{n<0} \quad \text{when } \epsilon' < 0 \text{ whereas } \mu' > 0$ (F is low)

Negative Refractive Index in Optics: State of the Art

Year and Research group	1st time posted and publication	Refractive index, n'	Wavelength λ	Figure of Merit F= n]/n "	Structure used
<u>2005:</u>					
Purdue	April 13 (2005) arXiv:physics/0504091 Opt. Lett. (2005)	-0.3	1.5 μm	0.1	Paired nanorods
UNM & Columbia	April 28 (2005) arXiv:physics/0504208 Phys. Rev. Lett. (2005)	-2	2.0 μm	0.5	Nano-fishnet with round voids
<u>2006:</u>					
UNM & Columbia	J. of OSA B (2006)	-4	1.8 μm	2.0	Nano-fishnet with round voids
Karlsruhe & ISU	OL. (2006) OL (2007)	-1 -1	1.4 μm 1.4 μm	3.0 2.5	Nano-fishnet 3-layer nanofishnet
Karlsruhe & ISU	OL (2006)	-0.6	780 nm	0.5	Nano-fishnet
Purdue	OL (2007)	-0.9 -1.1	770 nm 810nm	0.7 1.3	Nano-fishnet

see review: Nature Photonics v. 1, 41 (2007)

Negative permeability and negative permittivity

Nanostrip pair (TM)

Nanostrip pair (TE) $\mu < 0$ (resonant) $\epsilon < 0$ (non-resonant)

Fishnet ϵ and $\mu < 0$

S. Zhang, et al., PRL (2005)

Sample Geometry (Fishnet Structure)

• E-beam lithography

Stacking:

33 nm of Ag

33 nm of Ag

- Period = 300 nm along both axis
- Average width of strips along H = 130 nm Average width of strips along E = 95 nm

SEM image and primary polarization

Spectra for Primary Polarization

- Magnetic resonance around $\lambda = 800 \text{ nm}$
- Electric resonance around $\lambda = 600 \text{ nm}$
- Finite Elements

Solid line : Experimental Dashed line: Simulated

U. K. Chettiar, et al., Optics Letters 32, 1671 (2007)

Field Maps for Primary Polarization

9

Birck Nanotechnology Center

College of Engineering

PURDUE

Double Negative NIM (n'=-1.0, FOM=1.3, at 810 nm) Single Negative NIM (n'=-0.9, FOM=0.7, at 770 nm)

Summary on negative refractive index

- A Double Negative NIM (Negative index material) is demonstrated at a wavelength of ~810 nm
- The sample exhibits a figure of merit (-n'/n") of 1.3 and a transmittance of 25% at 813 nm
- The same sample shows Single Negative NIM behavior for the orthogonal polarization at a wavelength of ~770 nm with a figure of merit of 0.7 and a transmittance of 10%

An mode index of \sim -5 is obtained at the

Negative Refraction for Waveguide Modes

green light. negative refraction for 2D View from above Negatively SPPs in waveguides refracted wave Surface Slit plasmon Normal wave Visible light enters through slit Positively refracted wave Silver Silver 300 Si₃N₄ When surface plasmons Surface plasmons 50 nm Ag/Si3N4/Ag **light** line created which emerge from the prism, 400 ح carry the light they are negatively NI region 500 (nm) 600 700 refracted (see inset) 500 nm Gold Silicon nitride Au/Si3N4/Ag t = 50nm 1550 Silver 0.04 0.08 0.12 0 β (nm⁻¹)

Lezec, Dionne and Atwater, Science, 2007

Outline

- What are metamaterials?
- Early electrical metamaterials
- Magnetic metamaterials
- Negative-index metamaterials
- Chiral metamaterials
- Nonlinear optics with metamaterials
- Super-resolution
- > Optical cloaking

Chiral Optical Elements

Bose's Artificial chiral molecules: Twisted jute elements

J. C. Bose, Proceeding of Royal Soc. London, 1898

Optical counterparts:

Decher, Klein, Wegener and Linden Opt. Exp., 2007

The Zheludev group, U. Southampton Appl. Phys. Lett., 2007

Chiral Effects in Optical Metamaterials

Circular dichroism:

Decher, Klein, Wegener and Linden Opt. Exp., 2007

Giant optical gyrotropy:

The Zheludev group, U. Southampton Appl. Phys. Lett., 2007

Chirality can ease obtaining n<0: Tretyakov, et al (2003), Pendry (Science 2004)

Outline

- What are metamaterials?
- Early electrical metamaterials
- Magnetic metamaterials
- Negative-index metamaterials
- Chiral metamaterials
- Nonlinear optics with metamaterials
- Super-resolution
- > Optical cloaking

SHG and THG from Magnetic Metamaterial

<u>SHG:</u> Klein, Enkrich, Wegener, and Linden, Science, 2006 <u>SHG & THG:</u> Klein, Wegener, Feth and Linden, Opt. Express, 2007

NLO in NIMs: SHG

Backward Waves in NIMs: Distributed feedback, cavity-like amplification, etc.

SHG in NIMs: Nonlinear 100% Mirror

$$\omega_3 = \omega_1 + \omega_2$$
 (n₁ < 0, n₂, n₃ > 0) S_3 - Control Field (pump)

College

of Engineering

PURDUE

$$\eta_{1a} = |a_1(z)/a_{1L}|^2, \eta_{1g} = |a_1(z)/a_{20}|^2, \eta_{2g} = |a_2(z)/a_{1L}|^2$$

Manley-Rowe Relations:

$$\frac{d}{dz}\left(\frac{S_1}{\hbar\omega_1} - \frac{S_2}{\hbar\omega_2}\right) = 0$$

$$g = \left(\sqrt{\omega_1 \omega_2} \sqrt[4]{\varepsilon_1 \varepsilon_2 / \mu_1 \mu_2}\right) (8\pi / c) \chi^{(2)} h_3$$

Popov, VMS, Opt. Lett. (2006) Appl. Phys. B (2006) For SHG see also Agranovich et al and Kivshar et al

OPA in NIMs: Loss-Compensator and Cavity-Free Oscillator

Backward waves in NIMs -> Distributed feedback & cavity-like amplification and generation

 $g = \left(\sqrt{\omega_1 \omega_2} \sqrt[4]{\varepsilon_1 \varepsilon_2 / \mu_1 \mu_2} \right) \left(8\pi / c\right) \chi^{(2)} h_3 \qquad \eta_{1a} = \left|a_1(z) / a_{1L}\right|^2, \eta_{1g} = \left|a_1(z) / a_{20}\right|^2$

Resonances in output amplification and DFG

 $\alpha_1 L = 1, \, \alpha_2 L = 1/2$

- **OPA-Compensated Losses**
- **Cavity-free (no mirrors) Parametric Oscillations**
- Generation of Entangled Counter-propagating LH and RH photons

OPA with 4WM

Four-level $\chi^{(3)}$ centers embedded in NIM χ

College

Engineering

NIM $\chi^{(3)}$ -OPA assisted by the Raman Gain: $\omega_4 - \text{signal}; \omega_1, \omega_3 - \text{control fields}$ $\omega_2 = \omega_1 + \omega_3 - \omega_4 - \text{idler}$ (Raman-enhanced; contributes back to OPA at ω_4)

- χ⁽³⁾ -OPA: compensation of losses: transparency and amplification at ω₄
- Cavity-free generation of counterpropagating entangled right- and left-handed photons
- Control of local optical parameters through quantum interference

See talk tomorrow by Popov et al on NLO in MMs

Popov, et al OL (2007)

Outline

- What are metamaterials?
- Early electrical metamaterials
- Magnetic metamaterials
- Negative-index metamaterials
- Chiral metamaterials
- Nonlinear optics with metamaterials
- Super-resolution
- > Optical cloaking

Super-resolution:

Amplification of Evanescent Waves Enables sub- λ Image!

Waves scattered by an object have all the Fourier components $k_z = \sqrt{k_0^2 - k_x^2 - k_y^2}$ The propagating waves are limited to: $k_t = \sqrt{k_x^2 + k_y^2} < k_0$ To resolve features Δ , we must have $\lambda_t = 2\pi / k_t < \Delta$, $\Delta < \lambda \Rightarrow k_t = \sqrt{k_x^2 + k_y^2} > k_0$, $k_z^2 < 0$ The evanescent waves are "re-grown" in a NIM slab and fully recovered at the image plane

Perfect Lens

College

of Engineering

PURDUE

PURDUE

The Poor Man's (Near-Field) Superlens (ϵ < 0, μ =1)

Hyperlens:

Converting evanescent components to propagating waves (Narimanov eta al; Engheta et al)

Far-field sub- λ imaging

Optical Hyperlens

Hyperlens

Salandrino, Engehta, PRB, 2006 Experiments:

Z. Liu et al., Science, 2007 Smolyaninov et al., Science, 2007

0+0.0

0.5 X (μm)

Advanced Optical Hyperlens

Impedance-matched hyperlens

Kildishev, Narimanov (Opt. Lett., 2007) Flat hyperlenses: 1/2- & 1/4-body lenses

Kildishev, Shalaev (Opt. Lett., 2008)

Engineering Space for Light with Metamaterials

Part 1: Electrical and Magnetic Metamaterials

Part 2: Negative-Index Metamaterials, NLO, and super/hyper-lens

Part 3: Cloaking and Transformation Optics