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Analytical Solutions to the Schrodinger Equation

« Mathematical interpretation of Quantum Mechanics(QM)
——— V¥ + VY = ihg‘P

» Only a few number of problems have exact mathematical solutions
» They involve specialized functions
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1-D Particle in a Box - A Solution Guess

» (Step 1) Formulate time independent Schrodinger equation

hz d2 0 0 < XL LX
————y(X)+V (X)p(x)= Ew(x) where,V(X)=
2m dx* () +V 0)p(x) = Byx) (X) {oo elsewhere
V = V =0
» (Step 2) Use your intuition that the particle will
never exist outside the energy barriers to guess,
0 0<x<L,
#0 in the well SN NS
V=0

» (Step 3) Think of a solution in the well as: € >

v, (X)= Asin(nljZ x) , N=123,...

X
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1-D Particle in a Box - Visualization

» (Step 4) Plot first few solutions v, (X)= Asm( ] n=123...

A= \/\ - \/\“ w [\ A
co e Nk VLG UL

0<x<L, X
#0 inthe well

Matches the condition we guessed at step 2! W(X)—
But what do the NEGATIVE numbers mean?

* (Step 5) Plot corresponding electron densities

wn(X)( = A’si , N=123... mmp The distribution of SINGLE particle

fay Javanginy paaty

= “‘stype” Xx=L X=0 “ptype” x=L X= O “d-type” X—L X=0 “ftype” X=

ONE particle => density is normalized to ONE o |
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1-D Particle in a Box - Normalization to ONE particle

W, (X)(2 — Azsinz[rll_” x]

X

(Step 6) Normalization (determine the constant A)
Method 1) Use symmetry property of sinusoidal function

v, (X) over 0 ~ L,

Method 2) Integrate

1= "

{ZHﬂXJ

1-co 1 .
2 _ L« xo . ol N A2 Lx X A2
v, (X) dx_'f0 Asm(L x]dx—A J.O > dx = A=

X

. (X)— isinn—ﬁx n=123...
ot L \L ) 0<x<L,
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1-D Particle in a Box - The Solution

(Step 7) Plug the wave function back into the Schrodinger equation

Nz h* d?
X —sm—x ——— Y (X)+V (X)(X)= Ewy(X
09- [L] - 0 (w0 - Eu)
2
L E,
2m L,
A . A
[
w,(X)= \/75|n( J o
e n:4
hZ 2 2
o 2mL AN A n=3
n=123..., 0<x<L, ~
n=2
Discrete Energy Levels! /¥ n=1
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1-D Particle In a Box - Quantum vs. Macroscopic

* Quantum world — Macroscopic world
» What will happen with the discretized energy levels if we increase the length of the box?

2 _2
_ hrt

" 2mL?
L, =5nm L, =50nm L, =50cm

p=——\—— —~—93

» Energy level spacing goes smaller and smaller as physical dimension increases.
* In macroscopic world, where the energy spacing is too small to resolve,

we see continuum of energy values.
» Therefore, the quantum phenomena is only observed in nanoscale environment.
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3-D Particle In a Box

« What will happen if a particle is confined in a cube?
» Schrodinger equation in full 3-D representation
7 [dz d2 dzj
X,V,2)+V(X,V,2)w(X,V,2)= Ew(X,y,z
o Tay? o Py DV (xy )= Ey(xy )

- 2m L
» Energy confinement in 3-D & Z
0 O<x<L, ,0<y<L, O<z<l, L
vo-|0 0L Oyl -~
0 elsewhere X
« Similar to 1-D problem, we can conceive a set of solutions in a
similar form:

(X,y,2)= iiisin(nxﬂx sin My sin 2"
P CDETL L L L L L

X

2 2 2 2 2
c _htze|n, 4_EL +Ik
m 9om L, L, L,

n,n,n,=123..., 0<x<L,,0<y<L,0<z<L,

x1 'y tlz
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3-D Particle in a Cube
elet L =L, =L,=L

hen
i 2(nX2+n 2+n22)zK(nX2+n 2+n22)
mL y y

z

NNy 2
— (ET/Z sin(nx—7Z xjsin(M yjsin(nzﬂ zj
l//nxnynz L L L L
n n, n v
1 1 1

» Degenerate energy values

» same energy level

» multiple wavefunctions
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Transition Energy

Q: can a confined electron confined hop over energy states?

A: In principle, YES. It is possible “only if” we add appropriate amount of energy
(i.e. shining light with certain frequency, thermal energy, etc.) to the system.

* Energy values of interest?
» Difference between discrete energy levels
(i.e. E,-E;, E5-E,, E,-E4,....E4-E))
» Loses energy to settle at lower energy state
by emitting light
» Absorbs energy to jump up to higher state

AW§<

—

AT
J>I'|'I

1\ N
g > =T Es  «Transition Energy E,, =E_, —E, (=hf)
) é\ Q E » Energy needed to excite/relax an electron
N/\/\/\/\< )Q E2 from initial state n to final state m

A
\
[N

» LED,Laser (light emission)
» Photo detectors (energy excitation)
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Avallable States

Q: In a real Quantum Dot(QD), is it possible for electrons to hop
around the energy levels freely if you apply Transition Energy?
A: NO! Because there are limited number of “states” in each energy level.

Here's an example.
FE “Available” state

180% Excitation! 7 Electron(frog) “occupied” state.
(1G0% aitrsonpiiom)

& Any source of energy that helps
an electron(frog) to jump up to
the higher energy level

» Applying transition energy to the QD is not enough!
» Need available states for electrons to sit on.

 How do we know the occupancy at given energy level?

Fermi-Dirac Distribution Function o
PURDUE Gerhard Klimeck = S
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Fermi-Dirac Distribution Function

* Indicates the occupancy of states by electrons in equilibrium at
given temperature and energy.

1 E. : Fermienergy (eV)

f(E)= ke : Boltzmann constant (eV/K)
1+ exp[(E - EF)/kBT] T : Temperature (K)

1: Fully occupied by electrons

» Electrons tend to occupy from the
lowest energy levels (T=0K)

» As thermal energy increases, more
electrons near Fermi level are excited
to occupy higher energy states (T>0K)

Fermi energy @ 0.2 (eV)

0: No electrons present o
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Energy Absorption Example

» Think of a nanostructure that has following properties:
» Energy levels are discretized
» Device is operating in finite temperature (>0K)
» Number of states are kept constant regardless of energy level
» Let’s shine light and see what happens

. State Transition Absorption
ElE , E 3 Transition Energy P
(I 1 1=>2 E2-E1 (1 small
f(E) 11 | L)

0 % I 1=>3 E3-E1 (2) large

0:8 |: 5—1 2=>3 E3-E2 (3) large
: 4 Absorption
: measure
|
|
|

0.1 I

. I Transition

; | | E A Energy
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Quantum Dot Lab

* Now, let’s try examples to enhance your understandings

« We can verify all the items we have learned through “Quantum
Dot Lab”

e http://www.nanohub.org/tools/gdot/
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Simple Overview

» Analytical solutions are not always easy to obtain.
» What if we were interested in an “Ellipsoid shape” quantum dot?

» Can be easily computed with Quantum Dot Lab.

F i P 1 PR 5 PR ¢ il 2 .
Quantum Dot Lab orsee [ :
Result |Energy States - &=
About thistool | FAQ | Demo | Refresh Window | Popout | Close ENBgy St o
A
Mumber of States: 7 =
Y
Device Structure] Light Source ]
) .
j —— [1st Excited State = 351550471447 e\u"lijk—

Geometry: IEIIipsuid

X dimensions:[__ [10nm
Y dimensions: |:|1[I.5nm
Z dimensions:[___|5nm
Eg = 0.92269018025 eV

IE
—[Ground State = 2.99261450422 BV |—— ¥

1 result  Parameters...

Material:lGa."—‘-.s

A
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3D box - setup

Exercise 1:

Compute first 9 electron energy states in GaAs cubic Quantum Dot
with Lx =5nm Ly =5.5nm and Lz = 6nm. Follow given procedure.

Mumhber of Sta =

(Step 1) Run Rappture. Oevice Spucs | Ugnisouce | )
Geumetry(Elvoy -

(Step 2) In ‘Device Structure’ tab, S R

Choose the number of energy levels. ="
(Step 3) Select geometry of QD.
~ (Step 4) Set size of QD.

rMaterial: G,;.\ B

(Step 5) Select material of QD. A\

(Step 6) Simulate!

PURDUE Gerhard Klimeck R &



Exercise 1

« Computed Energy Level

Ground 5.5099 (eY) |5th Excited | 7.0171 (e}
1st Excited | 4 86EE (gY) |6th Excited | 7 2734 (V)
Ind Excited | 5 1278 (gY) |7th Excited abiE el
3rd Excited | 5 4615 (gY) |8th Excited | 2 0137 (gW)
4th Excited | £ 6334 (gY)

* Electron wave function at each energy level

PURD_UE Gerhard Klimeck

3d box - Eigenstates

State 1, 2, 3,4, 5

State 6, 7, 8,9
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Exercise 2 and 3

Exercise 2:

Compute the first 20 eigenstate of an InAs cubic quantum dot with Lx =
/nm, Ly =7.5nm and Lz = 2nm.

Tabulate corresponding energy values.

Exercise 3 :

Compute the first 20 eigenstates of GaAs pyramid quantum dot
with Lx = 10nm, Ly = 10.5nm and Lz = 5nm.

Tabulate corresponding energy values.

PURDUE Gerhard Klimeck %ﬁ:m @‘h
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Optical Property of Quantum Dot

 Optical Transition can be also computed with Quantum Dot Lab.

(Step 1) Select ‘Light Source’ Tab pevcesictne’ Clgt Suce )

P )
Fermi layel: ey

Temperature: (=0 300K
angle theta: [ 0dey

ngle phi:|_ode

(Step 2) Set Initial condition of simulation

» Location of Fermi Level
 Temperature
« Angle of Incident Light

(Step 3) Variation of optical properties is polarization
computed by sweeping one of following
parameters

- Angle Theta
- Angle Phi
- Fermi Level

aweep: | Angle theta
Miniturm: 0
Maxiturn: 90

Mumber of points: 10

E1L3
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Optical Property of Quantum Dot - Example

Result: |E Stat -
Example Problem SeERETEY SR <
expansion to exercise 1 Energy States 0
.
Cubic GaAs Quantum Dot A
=

Lx =5nm Ly =5.5nm and Lz = 6nm
Only FOUR (4) eigenstates.

Use (theta = phi = Fermi E = 0)

———{1st Excited State = 4.86552265495 E"»-’Iij

™

Ground 3.3099 (eV)
1st Excited | 4.866b (eV)
Ind Excited | 5. 1278 {eV)
3rd Excited | 5 4615 (gY)

Eg = 1.5555303117 eV

First 4 energy levels

[Ground State = 3.30933234325 eV|—— ¥

Darameters...
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Example Problem
expansion to exercise 1

Cubic GaAs Quantum Dot
Lx =5nm Ly =5.5nm and Lz = 6nm
Only FOUR (4) eigenstates.

Use (theta = phi = Fermi E = 0)

Ground 3.3099 (eV)
1st Excited | 4.866b (eV)
Ind Excited | 5. 1278 {eV)
3rd Excited | 5 4615 (gY)

First 4 energy levels

6 transition energies

PURDUE Gerhard Klimeck
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Optical Property of Quantum Dot - X-Polarized Light

Result: | Light and dark transitions (<-Polarized)

j S

1E-10 Allowed in X-polarized Light

. Forbidden in X-polarized Light

1E-20 —

Light'Dark Transition Strength (arb units)

L T ' |
i 1 2
Energy (eW)

... . by-rz px-pz _ pz-s I- PX-S

< Input pPX-py py-s
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Optical Property of Quantum Dot - Y-Polarized Light

Result: |Light and dark transitions (¥-Polarized)

1E-10 - Allowed in Y-polarized Light

il Forbidden in Y-polarized Light

Light/Dark Transition Strength (arh units)

T I T T
0 1 2
Energy (24

T Py-FZ - px-pz W pz-s [ Px-s

< Input PX-py py-s
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Optical Property of Quantum Dot - Z-Polarized Light

Result: |Light and dark transitions (Z-Polarized)

1E-10 —

Allowed in Z-polarized Light

Forbidden in Z-polprized Light

ﬁ>¥\\A

1E-20
‘—/

Light/Dark Transition Strength (arb units)

1E-30 —

‘ ' T ' |
0 1 2
Energy (2V)

. Pypz px-pz _ pz-s I- pX-S

<mput | PX-PY py-s
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Optical Property of Quantum Dot - X-Pol - orthogonal

®=0 6=0

polarization

b/

1E-5

&hsarption (arh units)

TE-10

U I U I
1 2

Energy (2V)

e e S — - I

< Input PX-py py-s
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Optical Property of Quantum Dot - Angle Variation

®=0 6=0..90

polarization

b/

165 —
W
=
=S
2
:,
=
=
=
(]
o
]
T 4E-10

U I U I
1 2

Energy (%)
o bypz pX-pz _ pz-s I- pX-S

< Input pPX-py py-s
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Optical Property of Quantum Dot - 45 Degree shift

®=45 6=0..90

polarization

b/

1E-5 -
= i
=
=
z
o
=
=]
=
[m )
o
=
<1
1E-10

U I U [
1 2

Energy (2¥)

. Py-pz px-pz _ pz-s |- pPX-S

< Input pPX-py py-s




®=45 O =0 20 states

polarization

1E-30 —

t'l"{ a4 e-Folarized) v Ll
. O
; 1E-10 — S
i
ST E1l
5 3.3099
a:-% 1E-20 —
. pz
= -
- i E2
% _ 4.8655

) . | . | by
5 10 E3

Energy (eV)

d results  Parameters.

Simulation = #3

Mumber of States : 3l pX

» Fermi level = .

All I px_s ! E4
5.4615

< Input py_S
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Optical Property of Quantum Dot - Many more states

®=45 O =0 20 states

polarization
o/ MIREL
O
."é‘
= 1E5
&
=
=2
=3
: V
=
e
1E-10
T T T T T
] 5 10
Energy (e
£ results  Parameters...
Simulation = #2
F Number of State
I -
pPX-S X
Input
=P py-s
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Optical Property of Quantum Dot - Increasing the Fermi

polarization

o/

=
=
=
=
3 1EE
=
=
=
()
ol
o)
T

1E-10

I U I U I
0 = 10

Energy (e

3 results  Parameters...

Simulation = #3
Mumber of States = 31
» Fermi level = 2.2

L PpX-s

L=

< Input

Py-S
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Homework Assignment - Project

1) For a pyramidal quantum dot with vertical absorption (theta=0
degree), design a quantum dot that has the highest absorption
energy as close as possible to 1leV.

2) How does the absorption change as a function of incident angle?
3) What happens if the Fermi level is increased to 1eV?
4) What if more states (>20) are included in the design calculation?

5) extra credit:

1) Simulate a cubic quantum dot where 5nm=Lx=Ly <> Lz=6nm. What
happens with the px and py states? What happens to the Lz state?
(hint: some states are degenerate, make sure you search for at least 10 states.)
2)  Simulate a cubic quantum dot where 5nm=Lx=Lz <> Ly=6nm. What
happens with the px and py states?
(hint: some states are degenerate, make sure you search for at least 10 states.)
3) Simulate a cubic quantum dot with 5nm=Lx=Ly=Lz. What happens to the
pX, py and pz states?
(hint: some states are degenerate, make sure you search for at least 10 states.)

4)  Why are certain absorption lines forbidden and others allowed?

PURDUE Gerhard Klimeck R &



Questions & Answers
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