Laue diffraction and the reciprocal lattice

Lecture 4

Outline

- **Laue Equations**
- **Reciprocal lattice**
- **Equivalence with Bragg's Law**
- **Ewald sphere construction**
- **Deviation parameter**

Laue Equations

Constructive interference when:

a(sin γ_1 - sin δ_1) = h λ b(sin γ_2 - sin δ_2) = k λ

h,k,l = integers

 $c(\sin\gamma_3 - \sin\delta_3) = I\lambda$

Laue Equations

Laue Equations

Diffraction occurs when:

A general solution to these simultaneous equations is:

$$\vec{\mathbf{K}} = \mathbf{h}\vec{\mathbf{a}}^* + \mathbf{k}\vec{\mathbf{b}}^* + \mathbf{l}\vec{\mathbf{c}}^* = \vec{\mathbf{g}}$$

Where \vec{a}^* , \vec{b}^* and \vec{c}^* define a new set of lattice vectors, which are related to \vec{a} , \vec{b} and \vec{c} according to:

$$\vec{a} \cdot \vec{a} = 1 \quad \vec{a} \cdot \vec{b} = 0 \quad \vec{a} \cdot \vec{c} = 0$$

$$\vec{b} \cdot \vec{a} = 0 \quad \vec{b} \cdot \vec{b} = 1 \quad \vec{b} \cdot \vec{c} = 0$$

$$\vec{c} \cdot \vec{a} = 0 \quad \vec{c} \cdot \vec{b} = 0 \quad \vec{c} \cdot \vec{c} = 1$$

Reciprocal lattice

This new lattice is referred to as the reciprocal lattice.

In real space:

$$\vec{r}_n = n_1 \vec{a} + n_2 \vec{b} + n_3 \vec{c}$$

In reciprocal space:

$$\vec{r}^* = \mathbf{m}_1 \vec{a}^* + \mathbf{m}_2 \vec{b}^* + \mathbf{m}_3 \vec{c}^*$$

Several properties of the reciprocal lattice include:

ā*⊥ Ď&ċ	$\vec{a}^* = \vec{b} \times \vec{c} / V$	$\mathbf{V} = \vec{\mathbf{a}} \cdot \vec{\mathbf{b}} \times \vec{\mathbf{c}}$
b *⊥ ā&ċ	$\vec{\mathbf{b}}^{\star} = \vec{\mathbf{a}} \times \vec{\mathbf{c}} / \mathbf{V}$	(volume of unit cell of real
c*⊥ ā&b	$\vec{c}^* = \vec{a} \times \vec{b} / V$	lattice)

(recall not all real lattices have orthogonal lattice vectors)

Reciprocal lattice

Consider a reciprocal lattice vector g such that:

 $\vec{g} = h\vec{a}^* + kb^* + lc^*$

where h,k and I are both integers, and are the Miller Indices of a plane in real space (h k l)

This vector g has two important properties (which we will prove):

$$\vec{g} \perp (hkl)$$
 and $|\vec{g}| = \frac{1}{d_{hkl}}$

Reciprocal lattice proofs

Reciprocal lattice proofs

Reciprocal lattice

Reciprocal lattice *points* each correspond to a *plane* in real space

Reciprocal lattice points are defined by reciprocal lattice vectors where:

$$\vec{g} \perp (hkl)$$
 and $d_{hkl} = \frac{1}{|\vec{g}|}$

Real => Reciprocal

The relationship between real and reciprocal determined

a* only parallel to a if a, b and c are mutually orthogonal

Diffraction

real space vs. reciprocal space

Bragg's Law

Laue Equations & Bragg's Law

Laue Equations have solⁿ:

 $\vec{\mathbf{K}} = \mathbf{h}\vec{a}^* + \mathbf{k}\vec{b}^* + \mathbf{l}\vec{c}^* = \vec{g}$

We have shown that:

$$\left| \vec{\mathsf{K}} \right| = \frac{2\sin\theta_{\mathsf{B}}}{\lambda} \quad \& \quad \left| \vec{\mathsf{g}} \right| = \frac{1}{\mathsf{d}_{\mathsf{hkl}}}$$

We recover Bragg's Law:

$$\frac{2\sin\theta_{B}}{\lambda} = \frac{1}{d_{hkl}}$$
$$2d_{hkl}\sin\theta_{B} = \lambda$$

Bragg's Law

Laue Equations & Bragg's Law

Laue Equations have solⁿ:

 $\vec{\mathbf{K}} = \mathbf{h}\vec{a}^* + \mathbf{k}\vec{b}^* + \mathbf{l}\vec{c}^* = \vec{g}$

We have shown that:

$$\left| \vec{\mathsf{K}} \right| = \frac{2\sin\theta_{\mathsf{B}}}{\lambda} \quad \& \quad \left| \vec{\mathsf{g}} \right| = \frac{1}{\mathsf{d}_{\mathsf{hkl}}}$$

We recover Bragg's Law:

$$\frac{2\sin\theta_{B}}{\lambda} = \frac{1}{d_{hkl}}$$
$$2d_{hkl}\sin\theta_{B} = \lambda$$

Diffraction reciprocal space **Ewald Sphere** (hkl) Radius 11A-1 $\left| \vec{\mathbf{k}}_{i} \right| = \left| \vec{\mathbf{k}}_{d} \right| = 1/\lambda$ **k**_d **2**0 \vec{k}_i G ġ "A Valt" not "E Walled"

Diffraction

Diffraction occurs when the Ewald sphere intersects a reciprocal lattice vector

k,

For 200 kV electrons, $1/\lambda = 1/0.00273$ nm = 366 nm⁻¹

Length of $|\vec{g}| = 3 \text{ nm}^{-1}$

Reciprocal lattice

Reciprocal lattice *points* each correspond to a *plane* in real space

Reciprocal lattice points are defined by reciprocal lattice vectors where:

$$\vec{g} \perp (hkl)$$
 and $d_{hkl} = \frac{1}{|\vec{g}|}$

Diffraction

Diffraction occurs when the Ewald sphere intersects a reciprocal lattice vector

k,

For 200 kV electrons, $1/\lambda = 1/0.00273$ nm = 366 nm⁻¹

Length of $|\vec{g}| = 3 \text{ nm}^{-1}$

Diffraction reciprocal space **Ewald Sphere** (hkl) Radius 11A-1 $\left| \vec{\mathbf{k}}_{i} \right| = \left| \vec{\mathbf{k}}_{d} \right| = 1/\lambda$ **k**_d **2**0 \vec{k}_i G ġ "A Valt" not "E Walled"

Diffraction

Diffraction occurs when the Ewald sphere intersects a reciprocal lattice vector

k,

For 200 kV electrons, $1/\lambda = 1/0.00273$ nm = 366 nm⁻¹

Length of $|\vec{g}| = 3 \text{ nm}^{-1}$

Resulting diffraction pattern

Diffraction

Diffraction occurs when the Ewald sphere intersects a reciprocal lattice vector

k,

For 200 kV electrons, $1/\lambda = 1/0.00273$ nm = 366 nm⁻¹

Length of $|\vec{g}| = 3 \text{ nm}^{-1}$

Higher order Laue Zones

Reciprocal lattice is not planar -- it is a true 3-D lattice

Zero order Laue Zone (ZOLZ), First Order Laue Zone (FOLZ), Higher order Laue Zone (HOLZ)

Resulting diffraction pattern

Reciprocal Lattice Rods

Each point in reciprocal space contains not a point, but rather a rod - "rel-rod"

- Result of the finite size of our diffracting crystals
- We'll derive this in a couple of lectures: for now, just believe me!

Ewald Sphere and Rel-rods

Presence of rel-rods "relaxes" diffraction requirements New vector $-\vec{s}$ - called "deviation parameter"

Resulting diffraction pattern

