Laue diffraction and the reciprocal lattice

Lecture 4

Outline

Laue Equations

Reciprocal lattice
Equivalence with Bragg's Law
Ewald sphere construction
Deviation parameter

Laue Equations

Constructive interference when:

$$
\begin{aligned}
& a\left(\sin \gamma_{1}-\sin \delta_{1}\right)=h \lambda \\
& b\left(\sin \gamma_{2}-\sin \delta_{2}\right)=k \lambda \quad h, k, l=\text { integers } \\
& c\left(\sin \gamma_{3}-\sin \delta_{3}\right)=l \lambda
\end{aligned}
$$

Laue Equations

Laue Equations

Diffraction occurs when:

$$
\begin{aligned}
& \overrightarrow{\mathbf{K}} \cdot \overrightarrow{\mathbf{a}}=\mathbf{h} \\
& \overrightarrow{\mathbf{K}} \cdot \overrightarrow{\mathbf{b}}=\mathbf{k} \quad \text { with } \mathbf{h}, \mathrm{k}, \mathrm{l}=\text { integers } \\
& \overrightarrow{\mathbf{K}} \cdot \overrightarrow{\mathbf{c}}=\mathrm{l}
\end{aligned}
$$

A general solution to these simultaneous equations is:

$$
\overrightarrow{\mathbf{k}}=\mathbf{h} \overrightarrow{\mathbf{a}}^{*}+\mathbf{k} \overrightarrow{\mathbf{b}}^{*}+\mathbf{l} \overrightarrow{\mathbf{c}}^{*}=\overrightarrow{\mathbf{g}}
$$

Where $\vec{a}^{\star}, \vec{b}^{\star}$ and $\overrightarrow{\mathbf{c}}^{\star}$ define a new set of lattice vectors, which are related to \vec{a}, \vec{b} and \vec{c} according to:

$$
\begin{array}{lll}
\vec{a}^{*} \cdot \vec{a}=1 & \vec{a}^{*} \cdot b=0 & \vec{a}^{*} \cdot \vec{c}=0 \\
\vec{b}^{*} \cdot \vec{a}=0 & \vec{b}^{*} \cdot b=1 & \vec{b} * \cdot \vec{c}=0 \\
\vec{c}^{*} \cdot \vec{a}=0 & \vec{c}^{*} \cdot b=0 & \vec{c}^{*} \cdot \vec{c}=1
\end{array}
$$

Reciprocal lattice

This new lattice is referred to as the reciprocal lattice.
In real space:

$$
\vec{r}_{\mathrm{n}}=\mathrm{n}_{1} \overrightarrow{\mathrm{a}}+\mathrm{n}_{2} \overrightarrow{\mathbf{b}}+\mathrm{n}_{3} \overrightarrow{\mathrm{c}}
$$

In reciprocal space:

$$
\overrightarrow{\mathbf{r}}^{\star}=\mathrm{m}_{1} \overrightarrow{\mathbf{a}}^{\star}+\mathrm{m}_{2} \overrightarrow{\mathbf{b}}^{\star}+\mathrm{m}_{3} \overrightarrow{\mathrm{c}}^{\star}
$$

Several properties of the reciprocal lattice include:

$$
\begin{array}{llc}
\vec{a}^{*} \perp \overrightarrow{\mathbf{b}} \& \overrightarrow{\mathbf{c}} & \vec{a}^{*}=\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}} / V & V=\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}} \\
\overrightarrow{\mathbf{b}} \times \perp \overrightarrow{\mathbf{a}} \& \overrightarrow{\mathbf{c}} & \overrightarrow{\mathbf{b}}^{*}=\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}} / V & \begin{array}{c}
\text { (volume of unit } \\
\text { cell of real } \\
\text { lattice) }
\end{array} \\
\overrightarrow{\mathbf{c}}^{*} \perp \overrightarrow{\mathbf{a}} \& \overrightarrow{\mathbf{b}} & \overrightarrow{\mathbf{c}}^{*}=\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}} / V &
\end{array}
$$

(recall not all real lattices have orthogonal lattice vectors)

Reciprocal lattice

Consider a reciprocal lattice vector g such that:

$$
\overrightarrow{\mathbf{g}}=\mathbf{h} \overrightarrow{\mathbf{a}}^{*}+\mathbf{k b} \mathbf{b}^{*}+\mathbf{l} \mathbf{c}^{*}
$$

where h, k and I are both integers, and are the Miller Indices of a plane in real space (h k l)

This vector g has two important properties (which we will prove):

$$
\vec{g} \perp(h k l) \text { and } \quad \vec{g} \left\lvert\,=\frac{1}{d_{\mathrm{hkl}}}\right.
$$

Reciprocal lattice proofs

Prove: $\overrightarrow{\mathbf{g}} \perp(\mathbf{h k l})$
1.) $\frac{\vec{a}}{h}+\overrightarrow{A B}=\frac{\vec{b}}{k}$

$$
\overrightarrow{A B}=\frac{\vec{b}}{k}-\frac{\vec{a}}{h}
$$

2.) Is $\vec{g} \perp \overrightarrow{A B}$?
$\vec{g} \cdot \overrightarrow{A B}=0$
(ha* ${ }^{\text {kb }}$ * $\left.+c^{*}\right) \cdot\left(\frac{\vec{b}}{k}-\frac{\vec{a}}{h}\right)=0$
3.) Can repeat to show:

$$
\overrightarrow{\mathrm{g}} \perp \overrightarrow{\mathrm{AC}}
$$

4.) $\vec{g} \perp(h k l)$

$$
\begin{gathered}
\vec{a}^{*} \cdot \vec{b}=\vec{a}^{*} \cdot \overrightarrow{\mathbf{c}}^{2}=\vec{b}^{*} \cdot \overrightarrow{\mathbf{c}}=\vec{b}^{*} \cdot \vec{a}=\overrightarrow{\mathbf{c}}^{*} \cdot \overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{b}}=0 \\
\vec{a}^{*} \cdot \vec{a}^{2}=\vec{b}^{*} \cdot \vec{b}=\overrightarrow{\mathbf{c}}^{*} \cdot \overrightarrow{\mathbf{c}}=1
\end{gathered}
$$

Reciprocal lattice proofs

$$
\text { Prove: } \left\lvert\, \overrightarrow{\mathbf{g}}=\frac{1}{d_{\mathrm{hkk}}}\right.
$$

Shortest distance must be projection of real lattice vector on to a unit vector in direction \vec{g} (define as $\overrightarrow{\mathrm{n}}$)

$$
\begin{aligned}
& d_{n k 1}=O N=\frac{\vec{a}}{h} \cdot \vec{n}=\frac{\vec{a}}{h} \cdot \frac{\vec{g}}{\vec{g}} \\
& d_{\mathrm{hkl}}=\frac{\overrightarrow{\mathbf{a}}}{\mathrm{h}} \cdot \frac{h \overrightarrow{\mathrm{a}}^{*}+\mathbf{k} \overrightarrow{\mathrm{b}}^{*}+\mid \overrightarrow{\mathbf{c}}^{*}}{|\overrightarrow{\mathbf{g}}|}=\frac{1}{\mid \overrightarrow{\mathbf{g}}} \\
& \overrightarrow{\mathbf{g}}=\frac{1}{d_{\mathrm{nk}}}
\end{aligned}
$$

Reciprocal lattice

Reciprocal lattice points each correspond to a plane in real space

Reciprocal lattice points are defined by reciprocal lattice vectors where:

$$
\overrightarrow{\mathrm{g}} \perp(\mathrm{hkl}) \text { and } \quad \mathrm{d}_{\mathrm{hkl}}=\frac{1}{\stackrel{\mathrm{~g}}{ }}
$$

Real => Reciprocal

The relationship between real and reciprocal determined by:

$$
\begin{array}{lll}
\vec{a}^{*} \cdot \vec{a}=1 & \vec{a}^{*} \cdot b=0 & \vec{a}^{*} \cdot \vec{c}=0 \\
\vec{b}^{*} \cdot \vec{a}=0 & \vec{b}^{*} \cdot b=1 & \vec{b} * \cdot \vec{c}=0 \\
\vec{c}^{*} \cdot \vec{a}^{2}=0 & \vec{c}^{*} \cdot b=0 & \vec{c}^{*} \cdot \vec{c}=1
\end{array}
$$

a* only parallel to a if \mathbf{a}, \mathbf{b} and \mathbf{c} are mutually orthogonal

Diffraction real space vs. reciprocal space

Real space

Reciprocal space

Bragg's Law

$$
2 \mathbf{d} \cdot \sin \theta=\mathbf{n} \lambda
$$

$$
\begin{gathered}
\overrightarrow{\mathbf{k}}_{\mathrm{d}}-\overrightarrow{\mathbf{k}}_{\mathrm{i}}=\overrightarrow{\mathbf{K}} \\
\overrightarrow{\mathbf{K}}=\frac{2 \sin \theta}{\lambda}=\frac{\mathbf{n}}{\mathbf{d}} \\
\overrightarrow{\mathbf{K}}=\overrightarrow{\mathbf{g}}
\end{gathered}
$$

Laue Equations \& Bragg's Law

Laue Equations have soln:

$$
\overrightarrow{\mathbf{k}}=h \overrightarrow{\mathbf{a}}^{*}+\mathbf{k} \overrightarrow{\mathbf{b}}^{\star}+\overrightarrow{\mathbf{c}}^{*}=\overrightarrow{\mathbf{g}}
$$

We have shown that:

$$
|\overrightarrow{\mathbf{K}}|=\frac{2 \sin \theta_{\mathrm{B}}}{\lambda} \quad \& \quad|\overrightarrow{\mathbf{g}}|=\frac{1}{\mathrm{~d}_{\mathrm{hkl}}}
$$

We recover Bragg's Law:

$$
\begin{aligned}
& \frac{2 \sin \theta_{\mathrm{B}}}{\lambda}=\frac{1}{d_{\mathrm{hkl}}} \\
& 2 d_{\mathrm{hkl}} \sin \theta_{\mathrm{B}}=\lambda
\end{aligned}
$$

(hkl) $\longrightarrow \quad k_{d}-k_{o}=K$

Bragg's Law

$$
2 \mathbf{d} \cdot \sin \theta=\mathbf{n} \lambda
$$

$$
\begin{gathered}
\overrightarrow{\mathbf{k}}_{\mathrm{d}}-\overrightarrow{\mathbf{k}}_{\mathrm{i}}=\overrightarrow{\mathbf{K}} \\
\overrightarrow{\mathbf{K}}=\frac{2 \sin \theta}{\lambda}=\frac{\mathbf{n}}{\mathbf{d}} \\
\overrightarrow{\mathbf{K}}=\overrightarrow{\mathbf{g}}
\end{gathered}
$$

Laue Equations \& Bragg's Law

Laue Equations have soln:

$$
\overrightarrow{\mathbf{k}}=h \overrightarrow{\mathbf{a}}^{*}+\mathbf{k} \overrightarrow{\mathbf{b}}^{\star}+\overrightarrow{\mathbf{c}}^{*}=\overrightarrow{\mathbf{g}}
$$

We have shown that:

$$
|\overrightarrow{\mathbf{K}}|=\frac{2 \sin \theta_{\mathrm{B}}}{\lambda} \quad \& \quad|\overrightarrow{\mathbf{g}}|=\frac{1}{\mathrm{~d}_{\mathrm{hkl}}}
$$

We recover Bragg's Law:

$$
\begin{aligned}
& \frac{2 \sin \theta_{\mathrm{B}}}{\lambda}=\frac{1}{d_{\mathrm{hkl}}} \\
& 2 d_{\mathrm{hkl}} \sin \theta_{\mathrm{B}}=\lambda
\end{aligned}
$$

(hkl) $\longrightarrow \quad k_{d}-k_{o}=K$

Diffraction
 reciprocal space

Diffraction

Diffraction occurs when the Ewald sphere intersects a reciprocal lattice vector

For 200 kV electrons, $1 / \lambda=1 / 0.00273 \mathrm{~nm}=366 \mathrm{~nm}^{-1}$
Length of $|\vec{g}|=3 \mathbf{n m}^{-1}$

Reciprocal lattice

Reciprocal lattice points each correspond to a plane in real space

Reciprocal lattice points are defined by reciprocal lattice vectors where:

$$
\overrightarrow{\mathrm{g}} \perp(\mathrm{hkl}) \text { and } \quad \mathrm{d}_{\mathrm{hkl}}=\frac{1}{\stackrel{\mathrm{~g}}{ }}
$$

Diffraction

Diffraction occurs when the Ewald sphere intersects a reciprocal lattice vector

For 200 kV electrons, $1 / \lambda=1 / 0.00273 \mathrm{~nm}=366 \mathrm{~nm}^{-1}$
Length of $|\vec{g}|=3 \mathbf{n m}^{-1}$

Diffraction
 reciprocal space

Diffraction

Diffraction occurs when the Ewald sphere intersects a reciprocal lattice vector

For 200 kV electrons, $1 / \lambda=1 / 0.00273 \mathrm{~nm}=366 \mathrm{~nm}^{-1}$
Length of $|\vec{g}|=3 \mathbf{n m}^{-1}$

Resulting diffraction pattern

Diffraction

Diffraction occurs when the Ewald sphere intersects a reciprocal lattice vector

For 200 kV electrons, $1 / \lambda=1 / 0.00273 \mathrm{~nm}=366 \mathrm{~nm}^{-1}$
Length of $|\vec{g}|=3 \mathbf{n m}^{-1}$

Higher order Laue Zones

Reciprocal lattice is not planar -- it is a true 3-D lattice
Zero order Laue Zone (ZOLZ), First Order Laue Zone (FOLZ), Higher order Laue Zone (HOLZ)

Resulting diffraction pattern

Reciprocal Lattice Rods

Each point in reciprocal space contains not a point, but rather a rod - "rel-rod"

- Result of the finite size of our diffracting crystals
- We'll derive this in a couple of lectures: for now, just believe me!

Ewald Sphere and Rel-rods

Presence of rel-rods "relaxes" diffraction requirements New vector - $\overrightarrow{\mathbf{s}}$ - called "deviation parameter"

Resulting diffraction pattern

