Analytical electron
microscopy

Lecture 12



Outline

Elastic and inelastic scattering of electrons
Energy dispersive spectroscopy (EDS)
Electron energy loss spectroscopy (EELS)

Energy filtered imaging (EFTEM)



Scattering in the TEM
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Energy Dispersive Spectroscopy
(EDS)



lonization cross sections
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X-ray production
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High energy electron scatters inner shell electron (E> E,)

Atom ionized. Can return to ground state by outer shell electron filling empty
state.

Accompanied by either x-ray emission or Auger electron emission.
— Characteristic of the particular energy states of the atom!



Possible electron transitions
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Fluorescence yield
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— EDS cannot be used for elements below boron

Can be used for C, N, O butit’s difficult
— Probably best to do EELS instead



Continuous Background
Bremsstrahlung

Electron interaction with
nucleus results in
continuous background
radiation mensiy|

At low energies,
attenuated by absorption
by specimen & detector




Excited volume

TEM

Where do the x-rays come L A e
from in the specimen? N

Depends ...

TEM:
— 200 to 300 kV normally

— Scattering quite localized to
electron probe

Not so in SEM of bulk SEM
materials

— Comparatively poor spatial
resolution

w Fe 10keV

Fe 30keV




Example x-ray spectra (EDS)

Several examples of

EDS spectra
Note:

— Relative # of counts

— Energy range of each

spectrum
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EDS Example
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EDS geometry

X-rays produced from all
angles.

The detector is a small
crystal, and subtends only
a small angle.

EDS is not efficient.

Specimen tilted to the
appropriate angle to
maximize collection
efficiency.
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X-ray spectrometers

Detector: Li doped (drifted)

Si reversed bias p-i-n
device

X-rays enter, create e-h
pairs

Number of e-h pairs
generated directly
proportional to x-ray
energy

These are swept to the
collector contacts

Done in series, but quickly.

Appears parallel

p-type region
(dead layer
~100 pm)

T Li-drifted intrinsic
region

n-type region

* Electrons Gold contact
o Holes surface (~200 nm)
Al Pb with Al skin

Si crystal

Al baffles

[

Pb with dag-coated Al skin



Spurious x-rays

Recall, x-rays generated at
all angles.

They are high energy.
Can excite further x-ray
production from:

— Microscope parts

— Sample holder
— Other regions of sample

Be careful!

— Do not modify microscope
without working w/ radiation
safety technicians
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Quantification
background subtraction

EDS is readily quantifiable.

- i.e. can determine the
relative proportion of one
element to another.

Need to subtract the
Bremsstrahlung
background to find real
number of counts.

Most modern software
does this for you.
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Quantification
Cliff-Lorimer method

Relatively simple idea - it works!
C. |
~MA_ K 1A
C. “l

But this means you have to have a standard.

Standards:

- ldeally, well characterized single phase
— Thin sample that is representative, stable
— Want very high counts: 104 above background

k,g is a function of the EDS / TEM combination.

— Itis NOT a constant (but can be theoretically estimated)

— Best if experimentally determined for a given system
« TEM + Detector + Geometry



Electron Energy Loss Spectroscopy
(EELS)



EELS Spectrometer

Electrons lose energy due
to inelastic scattering.

Use a magnetic
spectrometer to bend
electrons.

Magnetically
isolated

Essentially acts as a prism,
thereby ‘coloring’
electrons by energy loss.

Projector

{ CTOss0ver

4
Off axis electrons



What an EELS edge looks like

Well, it kind of depends... .
How thick is your sample? ;

Plural scattering in thick
samples changes

background, which
changes the edge. '

Plasmon peaks can be
convoluted

So = use a thinsample
- <1 mfp, ~500 A is great




Example EELS Spectra

This is from boron nitride
(with some carbon

I..?. 1” N T 1 | | ] |'

contamination) Counts

110*
Note sharp onset of the K- . B K
edges. |

610 |
Note the ‘white lines’ inthe | .|
boron edge. .|
Broad range of energy Y RO

160 240 320 ‘4ml fﬂ[] i 560

Huge number of counts vs. sl

those in EDS



K and L Edges

S0
410312 ckK
0 i ¢ t
200 300 400 500 600
Energy loss eV
1.0
"10°{ ¢
Si-Lz 3
7 e Si"L1
4
1
0

Energy loss

B0 100 120 140 160 180 200
eV

80
i b
Al-K
) i
g J\
0 ¢ ; t
1200 1400 1600 1800 2000
Energy loss eV
3.0
*10°| d
Grngg
|
T |
A"
m‘
0 $ + 1 }
400 500 600 700 800 900
Energy loss eV



M and N edges
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EELS vs. Band structure

Empty states

EELS maps empty states above Conductionrvtencevands___ 55300
the Fermi level.

/
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atoms

Low-loss region is from plasmon
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Empty states

This is why these are ‘edges’,
and not ‘peaks’ - there is an
onset.

Filled states




Allowed transitions

Like EDS, the observable
edges can be directly
related to the electron
shells.

04,5

You will observe K, L, M
edges

Depends on the atomic
weight of your material,
which you see.
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ELNES / EXELFS

E(V), Density of states 4 E(V)
_____________________ A
= I(D ~ 4eV \ Ev
Empty states 4 _ N
B Filled states “ [ gﬁgdggguom “\ B
an
AN | NV y
L Core = 123
states L1
K |- _ \J K
Dislanc; ) N(E), number of states with energy E

Near edge structure probes DOS in conduction band (ELNES)
— Increasing well understood, experiments becoming more routine

Extended structure probes chemical bonding (EXELFS)
— This is still largely a research topic in and among itself



ELNES - “Fingerprinting”

Ti valence determination using EELS
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Ti L, ; edge from trivalent Ti, O,
differs markedly from tetravalent
compounds TiO, and CaTiO;.
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Data courtesy Seth Taylor, GE Central Research



Comparison of collection EDS /
EELS

As you’ve seen the number i
of counts in EELS >> EDS beam

Function of collection o 104 10 i
ang|e. characteristic X-rays E
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EDS collects small angular i \ | distribution
distribution of all emitted x- 6 /‘Z e |
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rays 'riku-?n‘ :
Inelastic scattering of k | EELSsolidangle 15,

: &— contains most energy-loss electrons

electrons is largely
forward = most collected.




Spatial resolution

For best performance:

— Thin sample i -
— FEG: high brightness,
coherent = small probe o
pecimen 20

Probe size: AN

— Thermionic: 2 nm

- FEG: < 1A demonstrated, 2A ]
soon at NCEM o
| (R
EDS: need to worry about * |
beam spreading, spurious M
x-rays | D,
EELS: can be same size as ] \

probe




Sensitivity of EDS & EELS

“Minimum Mass Fraction” -
minimum detectability

— 0.01% to 1% for EDS & EELS

— Depends on microscope &
sample

“Minimum Detectable Mass”

— We’re talking about a smal//
volume

- 10’s to 100’s of atoms do-able
with EDS

- 100’s of atoms with EELS.

300 KV (est)

300 kV (est)

..-—‘\-‘:\::“ -

i in Fe
100 kY AEM

\\{‘\

— Ni in Fe
100 kV FEG-AEM

Microprobe: WDS, I1mm beam, ~100nA current, bulk specimen

AEM: ~ EDS, 20nm beam, ~1-3 nA cument, thin specimen
FEG - AEM: EDS, 2n = =1 nA current, thin specimen
I
001 gL

1.0

f n detectable (wt. %)




Energy filtered imaging (EFTEM)

To projector lens crossover I =
object plane of spectrometer Speumen

—Y — Objective
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Additionally, can image inelastically
scattered electrons Viewing screen

Spatial distribution of chemistry { %flmge
possible

— High spatial resolution
— Short collection time

CCD camera



EFTEM - example

From an Omega filtered
machine

Graded SiGe multilayer,
not Si layer in between -
only two monolayers.

Single monlayer detection
has been demonstrated.

Rapid acquisition, high
counts, quantifiable with
work

__ Pure S




Conclusions

AEM allows high spatial resolution determination
of the chemistry of a material

EDS:

- Quantifiable, simple, be careful of artifacts

EELS:

— Very powerful, harder to quantify, more than just
chemistry= DOS, bonding

EFTEM:

— Rapid spatial distribution of elements
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“Transmission Electron Microscopy” D.B. Williams and C. B. Carter, Plenum
Press, NY 1996.

— Great introductory text covering every major topic. Loads of references and
figures.

— Spend the money for the hardbound text - indices and figure refs are only in Vol.
1 of softbound which is incredibly annoying.

“Transmission Electron Microscopy” L. Reimer, Spriner, 1997
- Quite ‘physics-ey’. But excellent, detail descriptions of scattering processes.
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— Older book, but still very useful if you’re going to get into this area.
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