Electron scattering

Lecture 8

Electrons, photons, neutrons

Radiation	Elastic Mean Free Path (Å)	Absorption Length (Å)	Minimum Probe Size (Å)	
Neutrons	10 ⁸	10 ⁹	107	
X-rays	104	10 ⁶	10 ³	
Electrons	10 ²	10 ³	1	

Electrons interact very strongly with matter

- Electrons: small, negatively charged particles, directly scatter off of atom (either nucleus or electron cloud)
- X-rays: electromagnetic waves, field exchange with electron cloud
- Neutrons: heavy, uncharged particles, scatter by direct interaction with nucleus

Role of scattering in TEM

Electron scattering is the underlying physics of **TEM**

- Diffraction: elastic scattering
- Imaging: elastic & inelastic scattering
- Spectroscopy: inelastic scattering

Myriad of scattering processes

Particle vs. wave ...

Particle perspective:

- Collision between electron and atom
- No energy loss: elastic
- Energy loss: inelastic

Wave perspective:

- Coherent maintains phase
- Incoherent does not maintain phase

Scattering terminology

Forward scattering - thin samples

- Elastic forward scattering is usually low angle (1-10°), coherent
- Elastic scatter is less coherent at angles > 10°
- Inelastic scatter is not coherent
 - Most is very low angle (< 1°)
 - At high angles, inelastic scatter is very sensitive to atomic weight

Backscattering - thick samples

Single scattering, vs. plural scattering vs. multiple scattering (>20 events)

 General want to be in the single to (low #) plural scattering range

particle approach only

single electron / isolated atom

Interaction between electron & atom is Coulombic

- Incident electron & electron cloud
- Incident electron & nucleus

We'll want to understand:

- -Interaction cross section
- -Mean free path
- -Differential cross section

single electron / isolated atom

Interaction cross section expresses the probability of a given scattering event. Generally:

$$\sigma = \pi \mathbf{r}^2$$

Elastic scattering radius has the form:

$$\mathbf{r}_{\text{electron}} = \frac{\mathbf{e}}{\mathbf{V}\theta}$$
 ; $\mathbf{r}_{\text{nucleus}} = \frac{\mathbf{Z}\mathbf{e}}{\mathbf{V}\theta}$

Z = atomic weight

e = charge of the electron

V = potential of the electron

 θ = angle

Implications:

$$\begin{array}{ccc}
\mathbf{V} & \mathbf{\sigma} & \mathbf{V} \\
\mathbf{Z} & \mathbf{\sigma} & \mathbf{\sigma} \\
\mathbf{\theta} & \mathbf{\sigma} & \mathbf{V}
\end{array}$$

through specimen thickness

Consider instead specimen of N atoms / unit thickness.

Total cross section for scattering from specimen:

$$\mathbf{Q}_{\mathsf{T}} = \mathbf{N}\sigma_{\mathsf{T}} = \frac{\mathbf{N}_{\mathsf{o}}\sigma_{\mathsf{T}}\rho}{\mathsf{A}}$$

N = # atoms / unit volume

r = density

A = atomic weight

Scattering probability for a sample of thickness t:

$$Q_{T}t = \frac{N_{o}\sigma_{T}\rho t}{A}$$
 $\rho t \mathcal{O}'$ mass-thickness'

Can re-arrange to give another useful concept:

Mean free path: mfp or λ

$$\mathbf{mfp} = \frac{1}{\mathbf{Q}} = \frac{\mathbf{A}}{\mathbf{N_0} \sigma_{\mathsf{T}} \rho}$$

Screened relativistic Rutherford cross section

Can take into account relativistic effects, screening of the nucleus by the electron cloud (see W&C, pp. 39&40).

Screened relativistic Rutherford cross section

Can be plotted as an equivalent mean free path vs. incident energy

This gives you a good sense on allowable sample thickness!

Bremsstrahlung X-ray emission

"Braking" radiation

Electron is decelerated by Coulomb (charge) field of the nucleus, electromagnetic radiation (photon) is emitted

Can have any energy less than the incident energy

Results in a continuous background signal in an intensity vs. energy spectrum

Characteristic X-rays

Interaction w/ inner shell electrons

If energy sufficient, inner shell electron ejected

-Atom is 'ionized'

Atom can return to its lowest energy (ground) state

Electron from outer shell fill the hole in the inner shell

Energy required is characteristic of the atom

Characteristic X-rays - nomenclature

Characteristic X-rays

X-rays, as EM radiation can be considered as either waves or photons

Energy related to wavelength:

$$E = hv = \frac{hc}{\lambda}$$

Each transition has a specific energy associated with it (E_K, E_L, E_M)

$$- E_K, E_L, E_M < E_c$$

Thus each ionization event sets of a cascade of transitions

Characteristic X-rays

Fluorescence yield:

Strong atomic # dependence:

- One C K_a X-ray generated per 1000 ionization events
- One Ge K_a X-ray generated per 2 ionization events
 - Difference associated with relative chance of Auger electron production

Secondary electron emission

Incident electrons impart energy to electrons in the crystal

- -Slow secondary electrons
 - Electrons from the conduction or valence band
 - Require little energy: yields slow, unenergetic (<50 eV or so) electrons
 - These are what you use in the SEM
- Fast secondary electrons
 - Inner shell electrons which are ejected
 - Requires a lot of energy: yields fast, energetic (50 -200 keV or so) electrons
 - Result in additional scattering processes, degrade microanalysis resolution

comparison

Comparison of relative cross sections

Beam damage

High voltage, high current density electron beam can do considerable damage to a material

Two types:

- Radiolysis: Inelastic scattering ⇒ ionization which breaks bonds
- "Knock-on" damage: direct displacement of atoms

Increasing voltage: less radiolysis, more 'knockon'

Beam damage Knock-on thresholds

Table 4.2. Comparison of Maximum Transferable Kinetic Energy with Displacement and Sputtering Energies at 100, 200, 300, and 400 kV (from Zaluzec and Mansfield 1987)

Element	T (eV)				Displaement	_
	100 kV	200 kV	300 kV	400 kV	Threshold <i>T</i> (eV)	Threshole T (eV)
Al	8.93	19.5	31.6	45.3	16	4–8
Ti	5.00	11.0	17.8	25.5	15	4-8
V	4.73	10.3	16.72	24.0	29	7-14
Cr	4.63	10.1	16.38	23.5	22	5-11
Fe	4.31	9.40	15.25	21.8	16	4-8
Co	4.08	8.91	14.45	20.7	23	5-12
Ni	4.10	8.94	14.5	20.8	22	6-11
Cu	3.79	8.26	13.4	19.2	18	4–9
Zn	3.69	8.03	13.03	18.7	16	4-8
Nb	2.59	5.65	9.17	13.2	24	6-12
Mo	2.51	5.47	8.88	12.7	27	7-14
Ag	2.23	4.87	7.90	11.3	28	7–14
Cd	2.14	4.67	7.58	10.9	20	5-10
Ta	1.33	2.90	4.71	6.75	33	8-16
Pt	1.23	2.69	4.37	6.26	33	8-16
Au	1.22	2.67	4.32	6.2	36	9–18

These figures / tables are useful as a rule of thumb

- Some useful 'known' #'s:
- Al 170kV, Si 190kV, Carbon Nanotubes < 85 kV top surface, 140 kV elsewhere.
- If important to you, you may have to determine this yourself! Argh ...

Sputtering is just displacement damage from the surface

Beam damage specimen heating

Generally, not a worry in metals, semiconductors

Definitely so in ceramics, polymers

Reduce the cross section

- Thinner samples
- Higher voltage

Myths about specimen heating

- Anecdotal evidence from old HVEM's said this was significant
- Due to aperture heating, not sample heating

