Vacuum Science in EM

Lecture 6

Outline

Review of general vacuum concepts

– Very brief!

Types of vacuum gauges used in TEMs

- Pirani
- Penning

Types of pumps used in TEMs

- Mechanical / Roughing pump
- Diffusion Pump
- Turbomolecular pumps Turbo pumps
- lon pumps
- Cold-traps

A typical vacuum system

Why do we care in EM?

- Electrons scatter off of gases
- Gases contaminate samples

Pressure (P) units are a mess

- 1 Pascal (Pa) = $7.5 \cdot 10^{-3}$ Torr (≈ 10^{-2} Torr) = 10^{2} mbar

Ranges (approx.)

- Low vacuum: 760 Torr > P > 1 Torr
- Medium vacuum: 1 Torr > P > 10⁻³ Torr
- High vacuum: 10^{-3} Torr > P > 10^{-8} Torr
- Ultrahigh vacuum: P < 10⁻⁹
 - Surface science people will say it's not UHV until 10⁻¹⁰ Torr

Kinetic theory assumptions:

- Large # of molecules
- Adjacent molecules separated by distances that are large compared to their diameter
- Molecules in constant motion
- Molecules exert no force on each other except during collision

Pressure

- Rate at which momentum is transferred to a surface

$$P = \frac{1}{3}nmv_{rms}^2$$

Velocities follow a Maxwell-Boltzman distribution

$$\mathbf{v}_{\text{mean}} = \left(\frac{8kT}{\pi m}\right)^{1/2} \quad \mathbf{v}_{\text{rms}} = \left(\frac{3kT}{m}\right)^{1/2}$$

Mean free path (λ)

$$\lambda = \left(\frac{1}{2^{1/2} \pi d_0^2 n}\right)^{1/2} = \frac{0.67}{P (Pa)} = \frac{0.005}{P (Torr)}$$

Particle flux:

$$\Gamma = n \left(\frac{kT}{2\pi m} \right)^{\frac{1}{2}}$$

Monolayer formation time:

$$t_{ml} = \frac{1}{\Gamma d_o^2} = \frac{4}{nvd_o^2}$$

Atmospheric	1 nanosec
10 ⁻³ Torr	1 millisec
10 ⁻⁶ Torr	1 sec
10 ⁻⁸ Torr	100 sec
10 ⁻¹⁰ Torr	3 hrs

Vacuum gauges Pirani

Use a heated wire to form part of a Wheatstone bridge circuit

 $\Delta P \Rightarrow \Delta T \Rightarrow \Delta R$

Range: 1000 to 10⁻⁴ Torr

Uncertainty in accuracy is ±5%

Vacuum gauges

Ion gauges (hot cathode)

Force exerted by particles is too small to measure in high-vac & UHV conditions

Indirect readings needed

Operation

- Filament heated to produce e⁻'s
- Accelerated to grid
- lonize particles, which are subsequently collected

Range: 10⁻³ to 10⁻⁸

Not particularly accurate

Hot cathode

Vacuum gauges

Ion gauges (cold cathode - Penning)

Similar idea, but once e-'s emitted, they are spun around in a magnetic field

Leads to increased sensitivity, longer paths

Range: 10⁻² to 10⁻¹¹ Torr

Cold cathode

"Mechanical" pumps

Rotary pump

- From ambient to 10⁻³ Torr
 - "Rough" or "roughing" pump
- Oil based
- Dirty, loud, lots of vibration

Scroll pump

- Oil free
- Like a 'turbo pump' (more later) but designed to cover the low vacuum range
- Cleaner, still has some vibration
- Becoming the standard

Diffusion pumps

Hot oil used to trap gases

Very efficient

Vibration free

Range: capable of 10⁻³ to 10⁻¹¹ Torr

- Remember, that is only if system can handle 10⁻¹¹ Torr!
- Not used in UHV, though, for fear of back-streaming

Turbomolecular pumps

Rotary blade captures molecules, forces them out other side

Can operate from ambient to 10⁻⁹ Torr

- In about an hour ...
- Generally, you use a rough pump in conjunction with a turbo

Can introduce vibration

Ion pump

Electrons emitted from cathode

Spun around by a magnetic field

Incident gas is ionized

Ionized gas accelerated into pump walls, where it sticks

Can coat walls with Ti, to help that process

- Ti sublimation pump
- Ti coating renewed every day

Range: 10⁻⁵ to 10⁻¹¹ Torr

No vibrations

Cryo Pumps / cold fingers

Cold surfaces attract & retain residual molecular species

- Cryo-condensation
 - Molecules attracted to condensations sites on cold surface, as T decreases, their residence time there increases
- Cryo-sorption
 - Weak van der Waals attraction of molecules to surface
- Cryo-trapping
 - Trapping on one gas within the frozen porous condensate of another

Used in EM in two major ways

- "Cold fingers" or "anti-contamination devices"
- To help pumps (older microscopes)

Residual contaminants lost when surface warms up

Vacuum system

Actual vacuum system 2000FX

Symbols

DP: Oil diffusion pump

F: Filter

PeG: Penning gauge

PiG: Pirani gauge

PG: Pressure gauge

PS: Pressure switch

R: Vacuum reservoir

RP: Oil rotary pump

WB: Water-cooled baffle

Release valve

A: Manual valve

A: Pneumatic valve

Solenoid valve

Contamination

Main worry is residual hydrocarbons

- Pump oil
- Specimen & specimen holder

You can help

 Use gloves, use care (don't touch past the o-ring)

Residual water

Film