Lenses, Apertures and Resolution

Lecture 3

Lens, apertures & resolution

Review of optics

 Ray diagrams, optical elements, lens equation, magnification, demagnification, focus

Electron lenses

How they work, how electrons travel through them
 Apertures & diaphragms
 (Primary) aberrations
 Resolution
 Depth of focus / depth of field

Lenses Ray diagrams

Lenses

Electric & magnetic fields

Both electric and magnetic fields used to steer the electron beam

- Scan coils are electrostatic
- Lenses are magnetic

Lenses Magnetic fields

Rotation of electron results in image rotation

Old microscopes must have this calibrated

New microscopes add an extra projection lens

> Lens action coordinated to remove this rotation

Lenses Electron lenses

Objective lens must be strong

 Want specimen close to plane of objective lens (small u, large M)

Side entry

 Greater flexibility for sample rotation / probing

Top entry

- Maximum resolution
 - Less aberration
 - Smaller u

Side entry

Lenses Electron lenses

Quadropole

- Point object focused to a line image
- Used as stigmators

Hexapole & Octupole

 Combinations for aberration correction

Apertures

Apertures

Aberrations

Magnetic lenses are far from perfect Suffer from a host of aberrations

"Third order isotropic" aberrations:

- Spherical
- Astigmatism
- Coma

Distortion

- Field curvature
- **Chromatic aberration**
- Astigmatism (first order)
- Can be extended even further:
 - Third order anisotropic
 - Fifth order aberrations

Aberrations Spherical aberration

Off-axis rays focused more strongly than onaxis rays

Disk of least confusion:

$$\mathbf{d}_{s,min}^{'} = \mathbf{C}_{s}\beta^{3}$$

Larger in image:

$$d_{s,min} = 2C_s \beta^3$$

$\rm C_s$ usually 0.5 to 2 mm

- About equal to focal length

Aberrations Chromatic aberration

Not from differences in ΔE from the HV Tank& source per se.

- HV ripple is 1 part in 10⁶
 0.1eV
- $\Box \Delta E$ is source dependent

∆E arises from inelastic scattering

- Up to 2keV difference
- Most between 15-25 eV

Disk of least confusion

$$\mathbf{r}_{chr} = \mathbf{C}_{c} \frac{\Delta \mathbf{E}}{\mathbf{E}_{o}} \boldsymbol{\beta}$$

Resolution Theoretical

Theoretical resolution given by Rayleigh criterion:

$$\textbf{r}_{\text{th}} = \textbf{0.61} \frac{\lambda}{\beta}$$

Aberrations Astigmatism

Caused by inhomogeneities in the lens, aperture defects and aperture centering problems

- Fortunately, can be corrected
 - Stigmator octupoles

Learning how is a big part of initial labs

Aberrations Coma

Oblique, off-axis rays focused at different magnifications

This can be corrected through 'coma-free' alignment

Necessary for high resolution imaging

 Not as important in other work

Aberrations Distortions

Only a worry in low magnification modes (Lorentz imaging)

Resolution Airy disc

Presence of any aperture causes diffraction

At minimum, the main tube that runs down the column provides to provide vacuum acts as an aperture

Diffraction from a circular aperture yield an intensity known as an "Airy disc"

Resolution Spherical aberration limited

Recall:
$$r_{sph} = C_s \beta^3$$

Add in quadrature (arbitrary): $\mathbf{r} = \left[\mathbf{r}_{th}^{2} + \mathbf{r}_{sph}^{2}\right]^{\frac{1}{2}}$

**Variation w/
$$\beta$$
:**
$$\mathbf{r}(\beta) = \left[\left(\mathbf{0.61} \frac{\lambda}{\beta} \right)^2 + \left(\mathbf{C}_{\mathbf{s}} \beta^3 \right)^2 \right]^{\frac{1}{2}}$$

Find minimum:

$$\frac{dr(\beta)}{d\beta} = 0 = -2\frac{(0.61\lambda)^2}{\beta^3} + 6C_s^2\beta^5 \implies \beta_{opt} = 0.77\frac{\lambda^{1/4}}{C_s^{1/4}}$$
$$r_{min} = 0.91(C_s\lambda^3)^{1/4}$$

Depth of field & depth of focus

Depth of field:

- Depth of 'sharpness' in object space $D_{ob} = \frac{d_{ob}}{\beta_{ob}}$
- -2Å detail \Rightarrow 20 nm thick
- 2 nm detail \Rightarrow 200 nm thick

Depth of focus:

 Depth of 'sharpness' in image space

$$\boldsymbol{\mathsf{D}_{\mathsf{im}}} = \frac{\boldsymbol{\mathsf{d}_{\mathsf{ob}}}}{\beta_{\mathsf{ob}}}\boldsymbol{\mathsf{M}^2}$$

- 2Å detail ⇒ 500 kX ⇒ 5 km
- 2 nm detail \Rightarrow 50 kX \Rightarrow 5 m

