Basic Properties of Electrons and Electron Sources

Lecture 2

Basic properties of electrons

a reminder ...

Wave - particle duality of electrons is a manifested routinely in the electron microscope. Let's think about this:

- Electron accelerated at 100kV:

 $v \approx 0.5c \approx 1.6 \cdot 10^8$ m/s

- Electron current $\approx 1.0 \ \mu A \land 10^{12}$ electrons / sec

– Implication: each electron separated by \approx 1.6 mm

This implies that there is only one electron that is interacting with the specimen at any given time.

Despite this both particle & wave phenomena are observed:

- Electron diffraction wave phenomenon
- Electron interference interference between different waves
- Photoelectric effect particle phenomenon

Key point

- Get used to the idea that you consider the electron as *both* routinely when using the TEM
 - Diffraction think wave
 - Scattering think particle

A wave is a periodic disturbance in both space and time:

$$\Psi = \sin\left(\frac{2\pi x}{\lambda} + \omega t\right) = \sin\left(kx + \omega t\right) \text{ with } k = \frac{2\pi}{\lambda}$$

Consider two waves with slightly different frequencies:

$$\Psi_{1} = \sin[\mathbf{k}\mathbf{x} + \omega\mathbf{t}]$$
$$\Psi_{2} = \sin[(\mathbf{k} + \Delta\mathbf{k})\mathbf{x} + (\omega + \Delta\omega)\mathbf{t}]$$

Superimpose these two waves, use a bit of trigonometry:

$$\Psi_{1} + \Psi_{2} = \Psi = 2\cos\left(\frac{\Delta\omega}{2}\mathbf{t} + \frac{\Delta\mathbf{k}}{2}\mathbf{x}\right) \cdot \sin\left[\left(\mathbf{k} + \frac{\Delta\mathbf{k}}{2}\right)\mathbf{x} - \left(\omega + \frac{\Delta\omega}{2}\right)\mathbf{t}\right]$$

Modulated

Sine wave

An analogue to this is "beats" in music.

Let's look at this dynamically a bit:

http://galileo.phys.virginia.edu/classes/109N/more_stuff/Applets/sines/GroupVelocity.html

From Hummel

Two cases are illustrative:

 $\Delta \omega \rightarrow \mathbf{0} ; \Delta \mathbf{k} \rightarrow \mathbf{0}$

Infinitely long wave packet \rightarrow monochromatic wave

 \rightarrow plane wave

Phase velocity (velocity of the wave):

$$\mathbf{v} = \frac{\mathbf{x}}{\mathbf{t}} = \frac{\omega + \Delta \omega}{\mathbf{k} + \Delta \mathbf{k}} = \frac{\omega'}{\mathbf{t}}$$

Consider instead that you have many waves superimposed (i.e. $\Psi_1, \Psi_2, ..., \Psi_{\infty}$) which fill frequencies between ω and $\Delta \omega$, where $\Delta \omega$ is large:

- Reduces to one wave packet
- This wave packet can be considered as "the electron as particle"

Group velocity (velocity of the particle):

$$\boldsymbol{v}_{\boldsymbol{g}} = \frac{\boldsymbol{x}}{\boldsymbol{t}} = \frac{\Delta \boldsymbol{\omega}}{\Delta \boldsymbol{k}}$$

From Reimer

V_a

Δwlarge

Basic properties of electrons

De Broglie Eqn.:
$$\lambda = h/p$$

All energy is kinetic, i.e.: $eV = \frac{m_o V^2}{2}$ Momentum is: $p = m_o V = (2m_o eV)^{1/2}$

Substituting:

Key point: the higher the voltage, the smaller the wavelength

Relativistic correction needed

$$\lambda = \frac{\pi}{\left[2m_{o}eV\left(1+\frac{eV}{2m_{o}c^{2}}\right)\right]^{2}}$$

6

Basic properties of electrons

Accelerating Voltage (kV)	Non-relativistic wavelength (Å)	Relativistic wavelength (Å)	Mass (<i>x m_o</i>)	Velocity (<i>x 10⁸ m/s</i>)	Velocity (<i>x c</i>)
100	0.0386	0.0370	1.196	1.644	0.54
200	0.0273	0.0251	1.391	2.086	0.69
300	0.0223	0.0197	1.587	2.330	0.78
400	0.0193	0.0164	1.783	2.484	0.83
1000	0.0122	0.0087	2.957	2.823	0.94

Electron wavelength & resolution

Resolution (Rayleigh criterion):

$$\delta = \frac{\mathbf{0.61\lambda}}{\mu \sin \beta} \to \delta \approx \frac{\mathbf{0.61\lambda}}{\beta}$$

So - even at 100 kV, we have $\lambda = 0.04$ Å

- More than sufficiently small to image atoms (diameter ≈ 0.3 Å)
- Lens imperfections (largely spherical aberration, chromatic aberration) limit resolution

Angles & Distances ...

Some things worth remembering ... We deal often with very small angles: $-1^\circ = 17.5$ milliradians (mrad) ≈ 15 mrad

We use very high magnifications:

- -At 1000 X, 1 cm = 10 μ m
- -At 10,000X, 1 cm = 1 μm +
- -At 50,000X, 1 cm = 200 nm I just memorize these two
- -At 100,000X, 1 cm = 100 nm
- -At 500,000X, 1 cm = 20 nm = 200Å

Electron sources

Lecture 2

Electron sources

What are source characteristics?

 Brightness, Temporal (AE) coherency and Spatial coherency / source size

Source types?

Thermionic, Schottky field emission, Cold field emission

How do electron guns work?

- Thermionic, Field emission (both types)

How / why do you measure gun properties

 Beam current, convergence angle, beam diameter, energy spread, spatial coherency

Source characteristics

Source characteristics Brightness

Definition:

- Brightness: Current density per unit solid angle
- Current density is: # electrons per unit area per unit time

Some properties:

- Beam diameter: d_o
- Cathode emission current: i_e
- Semi-angle of divergence from source: α_o

Source characteristics Brightness

Brightness:
$$\beta = \frac{I_e}{(\pi d_o \alpha_o)^2}$$

This is a key parameter:

- impacts exposure times
- analytical work

Brightness (A/m²·sr)

Thermionic	10 ⁹
Schottky	5 .10 ¹⁰
Cold field emission	10 ¹³

Note: text has an error in defⁿ of solid angle

Source characteristics Temporal coherency & energy spread

Temporal coherency refers to the energy spread of the source

- Analogue to light optics is "color"
- Coherence length:

$$\lambda_{c} = \frac{\mathbf{vn}}{\Delta \mathbf{E}}$$

Typical ΔE

- Tungsten thermionic: 3 eV
- LaB₆ thermionic: 1 eV
- Schottky field emission: $\approx 0.8 \; eV$
- Cold field emission: 0.3 eV
 - Note this is on top of 200 to 300 keV

Important with respect to EEL spectroscopy

Source characteristics Spatial coherency & source size

Spatial coherency is associated with the physical 'point of origin' of the electrons

Related to the "effective source size" (d_c) :

To improve spatial coherency: $d_{c} \Downarrow (FEG); \lambda \Uparrow (\Uparrow kV); \alpha \Downarrow (\Downarrow aperture)$

Improved spatial coherency:

- Helps with high resolution imaging
- Gives sharper diffraction patterns
- Gives better diffraction contrast images

The answer is clear => FEG!? Not necessarily ...

 Expensive (+ \$700k), fringes in HREM images, less intense when beam is spread

Source characteristics Stability

Stability is important:

- HREM imaging
- Microanalysis

Typical stabilities in modern TEM's are:

- -"Ripple": 1 ppm RMS (latest are 0.1 ppm RMS)
- -"Drift": 2 ppm over 10 minute periods

Thermionic > Schottky FEG > Cold FEG

Emission physics

Emission physics thermionic emission

Recall: "work function"

 Energy required to remove an electron from a material

Schottky effect

Includes 'image field'

Thermionic emission

 Energy supplied by heat alone

Emission physics thermionic emission

Richardson Law: $j_{c} = AT_{c}^{2} \exp\left(\frac{-\phi}{kT}\right)$

- Exponential dependence means 10% change in φ,
 T yields factor of 8 increase in emission
- Function of T, surface condition & crystallography
- Lifetime: W ≈ 200 hr; LaB6 ≈ 1000 hr ; CeB₆ ≈ 1500 hr
 Sputtering

Material	φ (eV)	T _m (K)
Cs	1.9	301
Cu	4.45	1358
Со	4.4	1768
W	4.5	3695
LaB ₆	2.7	≈2800
CeB ₆	2.5	high

Emission physics Field emission

Additional electric field lowers barrier

$$V = eE(x)$$

If field is sufficiently strong, electrons can tunnel out

Schottky FEG

- Temp & field
- ZrO/W @1800k)

Cold FEG

- Field only
- **UHV necessary**

Emission physics

For field emission use instead Fowler - Nordhiem Eqn:

$$\mathbf{j_c} = \frac{\mathbf{k_1} \left| \mathbf{E} \right|^2}{\phi} \exp \left(\frac{\mathbf{k_2} \phi^{3/2}}{\left| \mathbf{E} \right|} \right)$$

Energy distribution for all cases (thermionic, Schottky, cold FEG) is Maxwell-Boltzmann

Emission physics summary

	β (A/m²sr)	∆E (eV)	d	Vacuum (Pa)
W	10 ⁹	1.5 - 3	20 - 50 µm	10 -3
LaB ₆	5-10 ⁹	1 - 2	10 - 20 µm	10-4
Schottky FEG	5 ·10 ¹⁰	0.7	15 nm	10 -6
Cold FEG	10 ¹³	0.3	2.5 nm	10 -8

Conventional TEM - LaB₆ / CeB₆ Schottky FEG - Conventional analytical Cold FEB - Very high end analytical E_{F} - - -

Probe comparison

Radiation	Source Brightness (particles/cm ² ·sr · eV)	Elastic Mean Free Path (Å)	Absorption Length (Å)	Minimum Probe Size (Å)
Neutrons	10 ¹⁴	10 ⁸	10 ⁹	107
X-rays	10 ²⁶	104	10 ⁶	10 ³
Electrons	10 ²⁹	10 ²	10 ³	1

Cold FEG is the brightest continuous radiation source known in the universe.

Because of high spatial & temporal coherency can be focused to the smallest probe available (0.78Å!)

Lots of energy, lots of potential for specimen damage

Electron Guns How do they work?

Electron guns thermionic

Filament heated to give thermionic emission

Directly (W) or indirectly (LaB₆)

Filament at negative potential to ground

Wehnelt produces a small negative bias

 Brings electrons to crossover

http://www.matter.org.uk/tem/electron_gun/electron_gun_simulation.htm

Electron guns thermionic

Perfect saturation / bias aids filament lifetime Also yields smallest source size, best coherency, best images

Electron guns field emission

First anode (V₁) is extraction voltage

Second anode (V₂) acts as an electrostatic lens

As an opertator, you slowly increase $V_{\rm 1}$

- That's pretty much it.
- Automated in latest machines

Different extraction voltages for different operation modes

Electron guns summary

TABLE 5.1. Characteristics of the Three Principal Sources Operating at 100 kV

	Units	Tungsten	LaB ₆	Field Emission
Work function, Φ	eV	4.5	2.4	4.5
Richardson's constant	A/m^2K^2	6×10^{5}	$4 imes 10^5$	
Operating temperature	K	2700	1700	300
Current density	A/m^2	$5 imes 10^4$	10^{6}	1010
Crossover size	μm	50	10	< 0.01
Brightness	A/m ² sr	109	5×10^{10}	1013
Energy spread	eV	3	1.5	0.3
Emission current stability	%/hr	<1	<1	5
Vacuum	Pa	10-2	10-4	10-8
Lifetime	hr	100	500	>1000