MSE 582 - Introduction to transmission electron microscopy 2 **MSE 640 - Transmission** electron microscopy & crystalline imperfections

Instructor: Eric Stach

Goals

• Goals:

- MSE 582: Perform simple imaging and diffraction experiments with the microscope
- MSE 640:
 - In depth understanding of fundamentals of scattering, diffraction and imaging
 - Practical application of these concepts towards materials characterization

Taught in four units:

- Operation of the TEM (MSE 582 content)
- Diffraction
- Imaging
- Spectroscopy

About me ...

Education

- B.S.E. Duke University
- M.S.M.S.E. University of Washington
- Ph.D. University of Virginia

Professional Experience

- Graduate research IBM Watson Research Labs
- Staff Scientist, Principal Investigator and Program Leader, National Center for Electron Microscopy & Materials Sciences Division, Lawrence Berkeley National Laboratory
- Associate Prof @ Purdue since January 2005

Research expertise

 Crystalline defects, crystal growth, electronic thin films, electron microscopy, mechanical behavior, nanostructured materials

Course mechanics

MSE 582: Pass/Fail

-Can you take a picture with the microscope? MSE 640:

- -Homework (20%)
- -Laboratories (30%)
 - We'll engage in a systematic study of the microstructure of an advanced aluminum alloy
- -Exams (50%)
 - Midterm (after diffraction unit 20%) and a Final (30%)

Selected Area Diffraction (SAD)

- Crystallographic structure from particular areas of a sample.
- Used to distinguish and identify crystalline (and amorphous) phases in a material.

Selected area diffraction pattern

1010 Zone axis pattern of a hexagonal GaN / cubic GaN heterostructure

Pattern reveals extensive twinning in the cubic layer

Convergent Beam Electron Diffraction (CBED)

- Point and Space
 Group determination
- Local strain
- Nanoscale diffraction

Convergent beam electon diffraction pattern

111 zone axis pattern of silicon

Note detailed structure in the central disk

Large-angle Convergent Beam Electron Diffraction (LACBED)

- Misorientation across grain boundaries
- Dislocation Burgers vector
- Crystalline symmetry

From J.P Mornoroli

Diffraction Contrast Imaging

Strain fields

- Dislocations
- Stacking faults
- Grain boundaries
- Precipitates
- Second phases

Typical bright field image

Dislocation configurations at the interface between a SiGe heteroepitaxial layer and a Si (100) substrate viewed in plan view (along [100])

- Diffraction Contrast Imaging
- One beam selected for imaging
 - Transmitted "bright field"
 - Diffracted "dark field"

Dark field image

'Weak beam' dark field image

High-resolution imaging Atomic column images at resolutions from 0.7Å and above

 Interference of transmitted and diffracted electron waves

High resolution micrograph of a precipitate at a high angle grain boundary in aluminum

High angle annular dark field (HAADF) imaging

- Accomplished in a dedicated Scanning TEM (STEM)
- Collects incoherent scatter, yields atomic resolution

Dissociated mixed dislocation in GaN

Courtesy of I. Arslan

Electron holography

Map the mean inner potential of a material

Courtesy of J. Cumings

Energy Dispersive X-ray Spectroscopy (EDS)

- Detection of characteristic x-rays excited by incident electrons.
- Spatial resolution on the order of probe size (can be as low as 2-3 Å)

Simple EDS spectrum from Al₂O₃

Electron energy loss spectroscopy

- Measures the amount of energy lost by the incident electrons.
- Similar spatial resolution, energy resolution of \approx 1 eV.
- Probes density of state (DOS) locally.

From Williams & Carter

Ti valence determination using EELS

Energy Loss (eV)

Ti $L_{2,3}$ edge from trivalent Ti₂O₃ differs markedly from tetravalent compounds TiO₂ and CaTiO₃

Ti $L_{2,3}$ edge from twist boundary closely matches edge structure of TiO₂ standard (Ti⁴⁺).

Energy Filtered Imaging

- Zero loss imaging removes inelastically scattered electrons from image
- Selective imaging of electrons that have lost a particular energy
- Most commonly used to create a map of local (≈ 1 nm) chemistry

Energy filtered image of a SiGe graded buffer structure using the Si K edge.

The brighter the pixel, the larger the concentration of Si.

Dynamical behavior

- Possible to apply many type of stimuli to samples during simultaneous imaging.
- Probe interrelationships between structure / properties and processing
- Stimuli include:
 - Temperatures to 1300°C
 - Temperatures to LN₂
 - Chemical flux
 - Nanomanipulation
 - Nanoindentation
 - Electrical bias in combination with heating
 - Uniaxial strain

Interaction between threading and misfit dislocations in a SiGe heterostructure

A way to organize our thoughts

In MSE 582 we will learn how to "use" the microscope

We will discuss:

- Electrons & scattering, briefly
- Electron sources
- Lenses & aberrations
- How the instrument goes together
- Alignment
- The sample

From Reimer

A way to organize our thoughts

In MSE 640, we will cover:

- Elastic & inelastic scattering
- Diffraction
 - Single scattering (kinematical)
 - Multiple scattering (dynamical)
- Image formation
 - Diffraction contrast
 - Phase contrast
 - Incoherent imaging
- Spectroscopy
 - Energy Dispersive X-ray Spectroscopy
 - Electron Energy Loss Spectroscopy

Basic properties of electrons

a reminder ...